固體冷卻材料及系統的市場及技術趨勢 (2026~2046年):輻射冷卻·PDRC·熱冷卻·熱電冷卻·多模式·多目的·其他
市場調查報告書
商品編碼
1794015

固體冷卻材料及系統的市場及技術趨勢 (2026~2046年):輻射冷卻·PDRC·熱冷卻·熱電冷卻·多模式·多目的·其他

Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046

出版日期: | 出版商: Zhar Research | 英文 472 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

摘要

受全球暖化、人工智慧資料中心、電動車和零排放電力生產等因素的影響,預計2026年至2046年間,冷卻技術的需求將激增。固態冷卻技術因其順應多功能智慧材料的發展趨勢、更高的可靠性、更廣泛的適用性、更長的使用壽命以及降低系統級成本的潛力,預計將發揮核心作用。

本報告探討了固態冷卻材料與系統市場及技術,為增值材料供應商、產品整合商以及整個價值鏈提供全面且最新的分析。這本472頁的書籍包含8個章節、11個SWOT評估、33條預測線(2026-2046)和36張資訊圖,全面涵蓋了該快速發展領域到2025年的進展,並重點介紹了截至2025年發表的97篇最重要的研究論文。

目錄

第1章 本報告的目的

  • 本分析的研究方法
  • 冷卻需求成長的原因
  • 固態冷卻的性質及其為何成為當前的優先事項
  • 冷卻工具包和目前有前景的領域
  • 20個關鍵結論
    • 九種候選固態冷卻技術的比較與評估
    • 目前研究的重點應用
    • 固態冷卻中具有前景的材料和原理
    • 2022 年至 2025 年 94 篇研究論文中關於熱冷卻的提及:按類型
    • 2024 年至 2025 年 292 篇固態冷卻研究論文中的關鍵資料
    • 蒸氣壓縮冷卻替代的潛力
    • 提高太陽能板效率的冷卻潛力
    • 冷卻 6G 通訊基礎設施和客戶端設備的潛力
    • 自冷雷射的潛力
  • 2000 年至 2046 年各種固態冷卻技術的溫度下降
  • 被動晝夜輻射冷卻 (PDRC) 及相關技術放射線冷卻技術
  • 主要熱致冷卻法評估
  • 熱電冷卻的 SWOT 評估和材料分析
  • 固態冷卻路線圖:依市場與技術
  • 市場預測:2026-2046
    • 全球冷卻模組市場:依 7 種技術
    • 商用產品中的地面輻射冷卻性能
    • 空調市場規模
    • 全球暖通空調、冰箱、冷凍機和其他冷卻市場
    • 冰箱和冷凍機市場規模
    • 固定電池市場與冷卻需求
    • 6G 通訊基礎設施和客戶端設備的熱管理材料和結構市場
    • 6G 介電材料和導熱材料市場(按地區)
    • 5G 與 6G 熱界面材料市場
    • 6G 與 5G 基地台市場
    • 市場規模:6G 基地台站點
    • 市場規模:6G RIS
    • 全球智慧型手機銷量
    • 熱元設備市場(依應用)

第2章 簡介

  • 概要
  • 冷卻需求的成長與變化
  • 2026 年至 2046 年冷卻需求急劇變化的範例
  • 2026 年至 2046 年冷卻技術向智慧材料發展的趨勢
  • 空調的革新:低功耗、更環保、更經濟
  • 廣泛使用和被提議的不受歡迎材料:商業機會
  • 固態冷卻競爭技術的範例

第3章 被動式白天輻射冷卻 (PDRC)

  • 概要
  • PDRC 基礎知識
  • 輻射冷卻材料研究與分析:依結構與配方
  • 潛在優勢與應用
  • 2025 年前的其他關鍵進展
  • PDRC 商業化的公司
    • 3M USA
    • BASF Germany
    • i2Cool USA
    • LifeLabs USA
    • Plasmonics USA
    • Radicool Japan, Malaysia etc.
    • SkyCool Systems USA
    • SolCold Israel
    • Spinoff from University of Massachusetts Amherst USA
    • SRI USA
  • PDRC的SWOT評估

第4章 輻射冷卻的廣泛視角:包括自適應、可切換、可調、Janus、反斯托克斯和先進光子固態冷卻

  • 概述及 SWOT 分析
  • 2025 年輻射冷卻的 22 項重大進展
  • 2026 年輻射冷卻技術成熟度曲線
  • 自適應和可切換輻射冷卻
  • 採用雙向控制的可調式輻射冷卻:Janus 輻射器 (JET) 的進展及 2024-2025 年 SWOT 評估
  • 反斯托克斯螢光冷卻的進展及 2024-2025 年 SWOT 評估
  • 先進的光子冷卻與防熱技術

第5章 利用鐵電相變進行熱冷卻

  • 利用結構和鐵電相變的冷卻模式和材料
  • 固態冷卻的潛力相變冷卻在某些應用中與其他方法競爭
  • 與熱致冷卻相關的物理原理
  • 熱致冷卻的工作原理
  • 與熱電冷卻的比較以及有前景的熱致冷卻技術的識別
  • 擴大熱致冷卻應用的研究建議
  • 電致冷卻
  • 磁致冷卻:SWOT 評估
  • 機械致冷卻(彈性致冷卻、壓力致冷卻和扭轉致冷卻)
  • 2025 年前多熱致冷卻的進展

第6章 實行技術:超材料冷卻材料和設備

  • 概要
  • 超原子、圖案化和靜態到動態傳熱
  • 關鍵結論:市場位置
  • 關鍵結論:代表性配方、功能與製造技術
  • 132 個近期熱超材料研究實例中的配方流行趨勢
  • 2025 年及 2024 年其他超材料冷卻及相關研究進展
  • 積層製造設計、製造、特性與應用

第7章 未來熱電冷卻和熱電發電(作為其他固態冷卻的用戶和電源)

  • 熱電材料
  • 廣域柔性熱電冷卻代表尚未滿足的市場需求與挑戰
  • 建築物輻射冷卻:熱電發電的多功能用途
  • TEC 與 TEG 中的散熱挑戰:不斷發展的解決方案
  • 熱電冷卻和冷氣發電的 20 項進展
  • 過去發展
  • 82家珀爾帖冷凍熱電模組及產品製造商

第8章 熱界面材料 (TIM) 及其他導熱材料及結構

  • 概述:從導熱黏合劑到導熱混凝土
  • 解決導熱材料冷卻難題的關鍵考量因素
  • 熱界面材料 (TIM)
  • 聚合物選項:矽基或碳基
  • 2025年及以後導熱聚合物的發展
簡介目錄

Summary

The period 2026-2046 will be marked by a surge in demand for cooling technology, reasons including global warming, AI datacenters, electric vehicles and zero-emission electricity production. Solid-state cooling will come center stage because it serves the trend to multifunctional smart materials and it tends to be more reliable, applicable and longer-lived, with potential for lowest cost at system level.

Unique report

The unique Zhar Research report, "Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046" is the only comprehensive, up-to-date analysis of these opportunities for added value materials suppliers, product integrators and all in the value chain. It has 8 chapters, 11 SWOT appraisals, 33 forecast lines 2026-2046, 36 infograms and 472 pages. Essentially, for such a fast-moving subject, it has full coverage of the surge of advances through 2025, including the 97 most important research papers through 2025.

The self-sufficient Executive Summary and Conclusions (43 pages) pulls it all together with 20 primary conclusions, the forecasts, new tables, pie charts, SWOT appraisals and graphics. The Introduction (31 pages) explains why the need for cooling becomes much larger and often different in nature, from 1kW microchips to 6G Communications.

Reinventing cooling - PDRC and caloric progress

Learn the problems with the dominant vapor compression cooling in our refrigerators, freezers and air conditioning. Understand reinventing air conditioning to be lower power, greener, more affordable. See how replacing the undesirable materials widely used and proposed for cooling is an opportunity for you but recognise that there is competition for solid state cooling - examples being given.

Chapter 3. "Passive Daytime Radiative Cooling (PDRC)" has 100 pages because it discusses the surge in research through 2025 targeting apparel, windows, solar panels and much more. Understand 40 important advances in 2024-5 and activities of ten companies. Chapter 4. (41 pages) gives the wider picture of radiative cooling including self-adaptive, switchable, tuned, Janus, Anti-Stokes and advanced photonic solid-state cooling. Self-cooled high-power lasers are one Anti-Stokes prospect, possibly for emerging fusion power. Twenty-two wider advances in radiative cooling in 2025 are assessed here. There is a maturity curve of radiative cooling technologies in 2026.

Chapter 5. Caloric cooling by ferroic phase change takes 76 pages due to its importance. Although magnetocaloric forms have long had some commercialisation, the research and industrial interest through 2025 has turned to electrocaloric, and, to a lesser extent, elastocaloric options. This chapter also covers several other options with many comparisons. It concludes that the new focus is commercially appropriate. It explains why multi-mode and giant-caloric versions described here should also be tracked.

Metamaterial cooling now intensely researched

Chapter 6. "Enabling Technology: Metamaterial Cooling Materials and Devices" (54 pages) tracks the enormous recent progress in this aspect, which is largely a better way of serving cooling principles already described. Research is strong but commercialisation is, so far, modest. The basics are explained plus relevance to greenhouse, window, solar panel and personal cooling. Understand the manufacturing technologies, and popularity by formulation in 132 examples of latest thermal metamaterial research.

Thermoelectric cooling reinvented for different uses

Chapter 7 covers future thermoelectric cooling and thermoelectric harvesting as a user of and power provider for other solid-state cooling (53 pages). It explains how this old technology has now progressed to commercial neck coolers, with prospects of wide-area, flexible thermoelectrics and avoidance of toxigens and expensive materials and machining. It is a strong candidate for cooling the new 1kW chips and even researched for buildings. Secondarily, there is coverage of thermoelectric harvesting to power solid-state cooling. Indeed, thermoelectric cooling can be enhanced by other forms of solid-state cooling on its cold side. 20 recent advances in thermoelectric cooling and harvesting involving solid-state cooling are highlighted and 82 manufactures of Peltier cooling thermoelectric modules and products are listed.

Thermal conduction with new materials

The report then closes with Chapter 8 (57 pages) on the allied topics of thermal Interface Materials TIM and other thermal conducting materials and structures. Much of this concerns TIM materials, issues, advances and practicalities emerging plus thermally conducting solids in general with graphics, SWOT appraisals, comparison tables. Seven current TIM options are compared against nine parameters in one table and nine important TIM research advances in 2025 and 2024 are presented. See thermally conductive polymer advances in 2025, companies making thermally conductive additives and progress to more sophisticated thermal composites.

The Zhar Research report, "Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046" is your essential guide to the multi-billion-dollar market that is emerging.

CAPTION: Best passive solid-state cooling technology for reducing temperature 5C to 20C 2026-2046 on current evidence. Source, Zhar Research report, "Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046" .

Table of Contents

1.1. Purpose of this report

  • 1.2. Methodology of this analysis
  • 1.3. Reasons for the escalating need for cooling
  • 1.4. The nature of solid-state cooling and why it is now a priority
  • 1.5. Cooling toolkit and potential winners on current evidence
    • 1.5.1. Cooling toolkit, trend to multimode with best solid-state cooling tools shown red
    • 1.5.2. Best passive solid-state cooling technology for reducing temperature 5C to 40C 2026-2046 on current evidence
    • 1.5.3. Best solid-state cooling technologies for reducing temperature 5C to 50C 2026-2046 on current evidence
  • 1.6. Twenty primary conclusions
    • 1.6.1. Nine candidate solid-state cooling technologies compared and appraised in columns
    • 1.6.2. Primary applications targetted by latest research
    • 1.6.3. Winning materials and principles for solid-state cooling generally
    • 1.6.4. Primary mentions of caloric cooling by type in 94 research papers 2022 through 2025 as an indicator of relative progress
    • 1.6.5. Leading materials in 292 research advances on solid state cooling 2024 through 2025
    • 1.6.6. Potential for replacing vapor compression cooling
    • 1.6.7. Potential for cooling solar panels to increase efficiency
    • 1.6.8. Potential for cooling 6G Communications infrastructure and client devices
    • 1.6.9. Potential for self-cooling lasers
  • 1.7. Best reported and potential temperature drop by different solid-state technologies 2000-2046
  • 1.8. Appraisal of Passive Daytime Radiative Cooling PDRC and allied radiative cooling technologies
    • 1.8.1. SWOT appraisal of passive radiative cooling in general
    • 1.8.2. SWOT appraisal of PDRC with materials analysis
    • 1.8.3. SWOT appraisal of Janus effect for thermal management
    • 1.8.4. SWOT appraisal of anti-Stokes fluorescence cooling
  • 1.9. Appraisal of the leading types of caloric cooling
    • 1.9.1. SWOT appraisal of electrocaloric cooling with materials analysis
    • 1.9.2. SWOT appraisal of elastocaloric cooling
  • 1.10. SWOT appraisal of thermoelectric cooling with materials analysis
  • 1.11. Solid state cooling roadmap by market and by technology 2026-2046
  • 1.12. Market forecasts as tables and graphs 2026-2046
    • 1.12.1. Cooling module global market by seven technologies $ billion 2025-2046
    • 1.12.2. Terrestrial radiative cooling performance in commercial products W/sq. m 2025-2046
    • 1.12.3. Air conditioner value market $ billion 2024-2046
    • 1.12.4. Global market for HVAC, refrigerators, freezers, other cooling $ billion 2025-2046
    • 1.12.5. Refrigerator and freezer value market $ billion 2024-2046
    • 1.12.6. Stationary battery market $ billion and cooling needs 2024-2046
    • 1.12.7. Thermal management material and structure for 6G Communications infrastructure and client devices $ billion if 6G is successful 2026-2046
    • 1.12.8. Dielectric and thermal materials for 6G value market % by location 2029-2046
    • 1.12.9. 5G vs 6G thermal interface material market $ billion 2025-2046
    • 1.12.10. Market for 6G vs 5G base stations units millions yearly 2025-2046
    • 1.12.11. Market for 6G base stations market value $bn if successful 2029-2046
    • 1.12.12. 6G RIS value market $ billion: active and three semi-passive categories 2029-2046
    • 1.12.13. Smartphone billion units sold globally 2024-2046 if 6G is successful
    • 1.12.14. Thermal meta-device market $ billion 2026-2046 by application segment

2. Introduction

  • 2.1. Overview
  • 2.2. Need for cooling becomes much larger and often different in nature
    • 2.2.1. General situation
    • 2.2.2. Infogram: Cooling needs increase for many reasons 2026-2046
  • 2.3. Examples of radical changes in the requirements for cooling 2026-2046
    • 2.3.1. Escalation of demand for air conditioning and forthcoming changes in requirement
    • 2.3.2. Problems becoming severe with traditional cooling inadequate
    • 2.3.3. Further reading on the problems of traditional vapor compression cooling
    • 2.3.4. How 6G Communications from 2030 will bring new cooling requirements: infograms
    • 2.3.5. Severe new microchip cooling requirements arriving
    • 2.3.6. Other cooling problems and opportunities emerging in electronics and ICT
  • 2.4. How cooling technology will trend to smart materials 2026-2046
  • 2.5. Reinventing air conditioning to be lower power, greener, more affordable
  • 2.6. Undesirable materials widely used and proposed: this is an opportunity for you
  • 2.7. Examples of competition for solid state cooling

3. Passive daytime radiative cooling (PDRC)

  • 3.1. Overview
  • 3.2. PDRC basics
  • 3.3. Radiative cooling materials by structure and formulation with research analysis
  • 3.4. Potential benefits and applications
    • 3.4.1. Overall opportunity and progress
    • 3.4.2. Transparent PDRC for facades, solar panels and windows including 8 advances 2024 through 2025
    • 3.4.3. Wearable PDRC, textile and fabric with 15 advances in 2024-5 and SWOT
    • 3.4.4. PDRC cold side boosting power of thermoelectric generators
    • 3.4.5. Color without compromise: advances in 2025 and earlier
    • 3.4.6. Aerogel and porous material approaches
    • 3.4.7. Environmental and inexpensive PDRC materials development
  • 3.5. Other important advances in 2025 and earlier
    • 3.5.1. 40 important advances in 2024-5
    • 3.5.2. Other advances
  • 3.6. Companies commercialising PDRC
    • 3.6.1. 3M USA
    • 3.6.2. BASF Germany
    • 3.6.3. i2Cool USA
    • 3.6.4. LifeLabs USA
    • 3.6.5. Plasmonics USA
    • 3.6.6. Radicool Japan, Malaysia etc.
    • 3.6.7. SkyCool Systems USA
    • 3.6.8. SolCold Israel
    • 3.6.9. Spinoff from University of Massachusetts Amherst USA
    • 3.6.10. SRI USA
  • 3.7. SWOT appraisal of Passive Daytime Radiative Cooling PDRC

4. Wider picture of radiative cooling including self-adaptive, switchable, tuned, Janus, Anti-Stokes and advanced photonic solid-state cooling

  • 4.1. Overview of the bigger picture with SWOT
  • 4.2. Twenty-two wider advances in radiative cooling in 2025
  • 4.3. Maturity curve of radiative cooling technologies in 2026
  • 4.4. Self-adaptive and switchable radiative cooling
    • 4.4.1. Vanadium phase change for self-adaptive versions in recent research
    • 4.4.2. Alternative using liquid crystal
  • 4.5. Tuned radiative cooling using both sides: Janus emitter JET advances in 2024 through 2025 with SWOT
  • 4.6. Anti-Stokes fluorescence cooling advances in 2024 through 2025 with SWOT appraisal
  • 4.7. Advanced photonic cooling and prevention of heating

5. Caloric cooling by ferroic phase change

  • 5.1. Structural and ferroic phase change cooling modes and materials
  • 5.2. Solid-state phase-change cooling potentially competing with other forms in named applications
  • 5.3. The physical principles adjoining caloric cooling
  • 5.4. Operating principles for caloric cooling
  • 5.5. Caloric compared to thermoelectric cooling and winning caloric technologies identified
  • 5.6. Some proposals for work to advance the use of caloric cooling
  • 5.7. Electrocaloric cooling
    • 5.7.1. Overview and SWOT appraisal
    • 5.7.2. Operating principles, device construction, successful materials and form factors
    • 5.7.3. Electrocaloric material popularity in latest research with explanation
    • 5.7.4. Giant electrocaloric effect through 2025
    • 5.7.5. Electrocaloric cooling: issues to address
    • 5.7.6. 10 important advances in 2025
    • 5.7.7. 58 earlier advances
  • 5.8. Magnetocaloric cooling with SWOT appraisal
    • 5.8.1. Overview with progress through 2035
    • 5.8.2. Magnetocaloric cooling in detail with SWOT appraisal
  • 5.9. Mechanocaloric cooling (elastocaloric, barocaloric, twistocaloric) cooling
    • 5.9.1. Elastocaloric cooling overview: operating principle, system design, applications, SWOT
    • 5.9.2. Elastocaloric advances in 2024-5
    • 5.9.3. Barocaloric cooling
  • 5.10. Multicaloric cooling advances in 2025

6. Enabling technology: Metamaterial cooling materials and devices

  • 6.1. Overview
    • 6.1.1. Capabilities
    • 6.1.2. Types of metamaterial thermal management materials by function
    • 6.1.3. Three families of metamaterials overlap
    • 6.1.4. Expanding choice of applications and new market drivers
    • 6.1.5. Examples of thermal metamaterials in recent advances
    • 6.1.6. Greenhouse, window, solar panel and personal cooling with metamaterials
    • 6.1.7. SWOT assessment for metamaterials and metasurfaces generally
    • 6.1.8. SWOT appraisal of thermal metamaterials
  • 6.2. The meta-atom, patterning and static to dynamic thermal transfer
  • 6.3. Primary conclusions; market positioning
  • 6.4. Primary conclusions: leading formulations, functionality and manufacturing technologies
  • 6.5. Popularity by formulation in 132 examples of latest thermal metamaterial research
  • 6.6. Other metamaterial cooling and allied research advances in 2025 and 2024
  • 6.7. Additive manufacturing design, fabrication, property and application

7. Future thermoelectric cooling and thermoelectric harvesting as a user of and power provider for other solid-state cooling

  • 7.1. Basics
    • 7.1.1. Operation, examples
    • 7.1.2. Thermoelectric cooling and temperature control applications 2025 and 2045
    • 7.1.3. SWOT appraisal of thermoelectric cooling, temperature control and harvesting
  • 7.2. Thermoelectric materials
    • 7.2.1. Requirements
    • 7.2.2. Useful and misleading metrics
    • 7.2.3. Quest for better zT performance which is often the wrong approach
    • 7.2.4. Some alternatives to bismuth telluride being considered
    • 7.2.5. Non-toxic and less toxic thermoelectric materials, some lower cost
    • 7.2.6. Ferron and spin driven thermoelectrics
  • 7.3. Wide area and flexible thermoelectric cooling is a gap in the market for you to address
    • 7.3.1. The need and general approaches
    • 7.3.2. Advances in flexible and wide area thermoelectric cooling in 2025 and earlier
    • 7.3.3. Wide area or flexible TEG research 40 examples that may lead to similar TEC
  • 7.4. Radiation cooling of buildings: multifunctional with thermoelectric harvesting
  • 7.5. The heat removal problem of TEC and TEG - evolving solutions
  • 7.6. 20 advances in thermoelectric cooling and harvesting involving cooling
  • 7.7. Earlier advances
  • 7.8. 82 Manufactures of Peltier cooling thermoelectric modules and products

8. Thermal Interface Materials TIM and other thermal conducting materials and structures

  • 8.1. Overview: thermal adhesives to thermally conductive concrete
    • 8.1.1. TIM, heat spreaders from micro to heavy industrial: activity of 17 companies
    • 8.1.2. 17 examples of research advances in 2025 and 2024 relevant to 6G transistors up to buildings
    • 8.1.3. Annealed pyrolytic graphite: progress in 2025 and 2024 as microelectronic TIM
    • 8.1.4. Thermally conductive concrete and allied work
  • 8.2. Important considerations when solving thermal challenges with conductive materials
    • 8.2.1. Bonding or non-bonding
    • 8.2.2. Varying heat
    • 8.2.3. Electrically conductive or not
    • 8.2.4. Placement
    • 8.2.5. Environmental attack
    • 8.2.6. Choosing a thermal structure
    • 8.2.7. Research on embedded cooling
  • 8.3. Thermal Interface Material TIM
    • 8.3.1. General
    • 8.3.2. Seven current options compared against nine parameters
    • 8.3.3. Nine important research advances in 2025 and 2024
    • 8.3.4. Thermal pastes compared
    • 8.3.5. TIM and other examples today: Henkel, Momentive, ShinEtsu, Sekisui, Fujitsu, Suzhou Dasen
    • 8.3.6. 37 examples of TIM manufacturers
    • 8.3.7. Thermal interface material trends as needs change: graphene, liquid metals etc.
  • 8.4. Polymer choices: silicones or carbon-based
    • 8.4.1. Comparison
    • 8.4.2. Silicone parameters, ShinEtsu, patents
    • 8.4.3. SWOT appraisal for silicone thermal conduction materials
  • 8.5. Thermally conductive polymer advances in 2025 and earlier
    • 8.5.1. Overview
    • 8.5.2. Examples of companies making thermally conductive additives
    • 8.5.3. Thermally conductive polymers: pie charts of host materials and particulates prioritised in research
    • 8.5.4. Important progress in 2025 and earlier