水凝膠助力未來醫療保健:醫療、健身、健康和獸醫應用(2025-2045)
市場調查報告書
商品編碼
1745942

水凝膠助力未來醫療保健:醫療、健身、健康和獸醫應用(2025-2045)

Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045

出版日期: | 出版商: Zhar Research | 英文 240 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

長壽與生活品質

我們的許多子孫後代將活到120歲,隨著水凝膠領域最新的驚人進展,他們或許能夠享受更高品質的生活。

兩大平行趨勢

主要作者Peter Harrop博士表示: "兩大平行趨勢將推動醫療保健水凝膠市場強勁成長,從2025年的370億美元增加到2045年的1,540億美元。 衛生棉、尿布和隱形眼鏡等成熟產品將在新興市場中更加普及。同時,已開發國家將積極採用創新技術,使癱瘓者恢復行動能力,使盲人重見光明,並使衰竭的器官被替換。為了實現這一目標,新型無機水凝膠正在迅速湧現,包括複合材料、天然/合成混合物以及通用水凝膠。未來,甚至可能用於手術的工程生物材料水凝膠支架。

本報告提供醫療保健用水凝膠的市場調查,彙整背景,醫療·非醫療領域的用途,最尖端的研究趨勢,市場規模的預測,專家的採訪,事業機會,潛在的合作夥伴,競爭企業等分析。

目錄

第1章 摘要整理·總論

第2章 簡介

  • 背景
  • 2025年醫療保健水凝膠配方的進步
  • 關於 "凝膠" 一詞的說明
  • 局限性
  • 天然與合成
  • 水凝膠有毒物質為何重要
  • 23種醫用水凝膠的開發與應用
  • 19種醫療保健水凝膠在6個非醫療領域的應用
  • 傷口癒合的進展
  • 水凝膠製造技術的演變(包括3D和4D列印)

第3章 醫療保健的水凝膠Toolkit

  • 概要
  • 水凝膠的SWOT評估:他們今天在哪裡?
  • 圖表顯示水凝膠市場的成長
  • 水凝膠分子工具包與趨勢
  • 六種新興水凝膠化學和功能係列
  • 支援六大細分領域水凝膠未來發展的技術類別
  • 與矽膠及聚氨酯水凝膠的競爭及潛在整合
  • 最新研究中其他新興材料如何與水凝膠競爭
  • 水凝膠改進的最有前景的方向
  • 彈性體水凝膠系統 (EHS)
  • 混合水凝膠
  • 自修復水凝膠及其 SWOT 評估(資訊圖表)

第4章 未來的水凝膠:冷卻,醫藥品,義肢,治療用途,其他

  • 概要
  • 資訊圖表:新興的冷卻和熱管理需求
  • 五張資訊圖表:冷卻工具包與機遇水凝膠
  • 水凝膠蒸發冷卻
  • 未來水凝膠技術在醫療電子、6G通訊和太陽能板冷卻的應用
  • 太陽能板水凝膠冷卻,包括有效水回收
  • 建築冷卻領域獨特的新型水凝膠
  • 氣凝膠和水凝膠組合在藥物冷卻的應用
  • 用於軟體機器人和義肢的自冷卻智慧型執行器
  • 其他與醫療保健課題相關的冷卻水凝膠

第5章 含自我修復功能未來的醫療保健水凝膠的實用化

  • 定義與重點
  • 自修復基礎知識
  • 自修復水凝膠在工程和醫療保健領域的重要性
  • 自修復材料的SWOT評估
  • 自修復的技術選擇水凝膠
  • 水凝膠在實際和潛在自修復應用上與其他替代品的競爭力
  • 2025-2045 年重點研發案例

第6章 未來的水凝膠薄膜,皮膚,薄膜:離子交換,天然氣(氣體)分離,其他

  • 概要
  • 膜的難度等級和自修復的需求
  • 近期自修復膜化學研究
  • 基礎知識
  • 建築膜與聲學膜
  • 電池、超級電容器、燃料電池隔膜和電解質膜
  • 人類和機器人的電子皮膚
  • 氣體分離
  • 離子導體
  • 超濾膜

第7章 未來的水凝膠軟性電子產品,感測器,固體能源儲存

  • 概要
  • 彈性及固體能源儲存範例
  • 生物科技及環境用途的磁響應能力水凝膠
  • 感測器和感測
  • 電晶體
  • 電子設備用熱水凝膠

第8章 以水凝膠為基礎的ELM及其競爭對手

  • 概述
  • 向自然學習
  • 代表性特徵與材料
  • 分類
  • 障礙與前進的道路
  • ELM研究中的生物材料範例

第9章 未來醫療基礎設施與水領域的水凝膠材料管理

  • 概述
  • 混凝土和其他膠凝材料
  • 使用水凝膠取得安全飲用水
  • 水凝膠及從空氣中提取有用水的替代品
  • 可重複使用的水凝膠用於貴金屬回收
簡介目錄

Summary

Longevity, quality of life

Many of our grandchildren may live to 120 years and have a far better quality of life due to latest heroic achievements with hydrogels. A unique new Zhar Research report looks deeply into latest 2025 research and its interviews with PhD level analysis and forecasting, revealing your opportunities, potential partners and competition for both the materials and devices emerging. It is commercially oriented, 320-page, "Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045".

Two parallel trends

Primary author, Dr Peter Harrop says, "Two parallel trends drive robust growth of the healthcare hydrogel market from $37 billion in 2025 to $154 billion in 2045. The mature products such as pads, diapers and contact lenses will be adopted by emerging countries. Advanced countries will eagerly adopt new advances enabling the paralysed to function, the blind to see, failed organs to be replaced and much more. New inanimate hydrogels are rapidly arriving to achieve this, including composites, hybrid natural/ synthetic and multipurpose hydrogels but later years will even see hydrogel scaffolds for Engineered Living Materials employed in surgery."

Complete summary

The Executive Summary and Conclusions (36-pages) is enough for those in a hurry, for here are the 16 primary conclusions, the emerging technologies and market dynamics in detailed new infograms, 21 forecast lines and roadmap 2025-2045. See problems that are your opportunities such as replacing toxigen intermediaries.

Deep analysis for materials and hardware suppliers

The Introduction (22 pages) briefly gives the long history and companies involved today then more detail on the many benefits, market drivers and formulations for healthcare hydrogels with advances in 2025. What are currently the popular choices and why is the biomimetic approach very useful? Why should we be beware of the term gel and recognise many toxigen and performance limitations of current hydrogels? See 23 examples of medical hydrogel advances and applications and 19 examples of other healthcare-related hydrogel applications in six sectors beyond medical. Other topics introduced are natural vs synthetic, wound healing advances in 2025 and evolving production technologies for hydrogels including 3D and 4D printing in 2025.

Comprehensive toolkit emerging with examples of medical achievements

Chapter 3. Hydrogel Toolkit for Healthcare 2025-2045 (30 detailed pages) to explain all this in detail including six families of hydrogel chemistry and functionality and subsets such as Elastomer Hydrogel Systems EHS. Commercial emphasis is enhanced by some latest research advances in wound healing, sensorised and rejuvenated skin, easing Crohn's disease, and restoring vision, with Zhar Research analysis.

Healthcare cooling hydrogels

Chapter 4. Future Hydrogels that Cool: Pharmaceutical, Prosthetic, Therapeutic, other (33 pages) appraises this commercially important aspect. Six infograms display major new cooling and thermal management needs arriving 2025-2045, the cooling toolkit and the hydrogel opportunity. Understand hydrogel evaporative cooling in general with ambitions, limitations. What about future hydrogel technologies, even cooling of healthcare electronics, use of hydrogel-silica aerogel, thermogalvanic hydrogel for synchronous evaporative cooling and latest 2025 research advances? Healthcare facilities may employ hydrogel windows to block and store heat, use aerogel and hydrogel together cool pharmaceuticals. Expect self-cooling smart actuators for soft robotics and prosthetics and learn other cooling hydrogels relevant to healthcare challenges 2025-2045.

Healthcare self-healing hydrogels and more

Chapter 5. Future Healthcare Hydrogels in Action, Including Self-healing Function, with 81 pages, looks more generally at the future applications, mostly revealing the great importance of self-healing hydrogels. Understand the science of intrinsic and extrinsic self-healing and the value chain. See types of damage addressed with examples such as skin, bone regeneration, wound healing, cancer therapy and drug delivery with hydrogels, including injectables, but the dilemma of metrics for self-healing and the benefits of alternatives. A SWOT appraisal is followed by important examples in the research pipeline for 2025-2045. Self-healing healthcare electronics, sensors and nanogenerators for smart patches and implants is covered. Then comes research success with spinal cord implants for treating paralysis, soft robotics, smart prosthetics, bioelectronics and cartilage, stretchable hydrogels for protein delivery, tissue engineering, adding the impact of adhesive and self-lubricating hydrogels.

Membrane, skin, film, ELM hydrogels emerging

Chapter 6. Future Hydrogel Membranes, Skin and Film: Ion-exchange, Gas separation, Other (19 pages) expands on these aspects with detailed tabular comparisons and many research advances from 2025. Zhar Research finds that almost all the market potential for healthcare hydrogels will involve inanimate forms, increasingly synthetic for tailoring to purpose but Engineered Living Material may get commercialised late in the 2025-2045 timeframe with hydrogels favourite as scaffolds on which the living material is grown for therapy on and later in humans but in competition with entirely inanimate hydrogel solutions to the same challenges. All that is covered in Chapter 8. Engineered Living Materials ELM Using or Competing with Hydrogels (29 pages). However, understand why the level of research is not increasing. The report then ends with the more peripheral topic in Chapter 9. Future Hydrogel Materials in Healthcare Infrastructure and Water Management with companies, technologies and progress involved. In the whole report, 59 companies are mentioned.

Essential reading

The latest information and in-depth analysis is essential to aid your participation in commercial healthcare hydrogels. The report, "Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045" is your essential source.

CAPTION: Hydrogel market expansion across medical. fitness, wellness sectors 2025-2045. Source, Zhar Research report, "Hydrogels for Future Healthcare: Medical, Fitness, Wellness, Veterinary Applications 2025-2045".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and layout of this report
  • 1.2. Methodology
  • 1.3. Infogram: hydrogel market expansion across medical. fitness, wellness sectors 2025-2045
  • 1.4. Definitions, needs and context
  • 1.5. Sixteen primary conclusions
  • 1.6. How hydrogel toxigens are an issue and an opportunity
  • 1.7. Hydrogel technology choices, examples, trends
  • 1.8. Analysis of recent research advances by material type
  • 1.9. Hydrogel SWOT appraisal
  • 1.10. Hydrogel roadmap 2025-2045 by industry sector
  • 1.11. Market forecasts 2025-2045 in 21 lines
    • 1.11.1. Healthcare hydrogel devices vs hydrogel materials market $ billion 2025-2045
    • 1.11.2. Global market for hydrogel materials: 3 sectors and total $ billion 2025-2045
    • 1.11.3. Four regions percentage of healthcare hydrogel material value market 2025-2045
    • 1.11.4. Synthetic vs natural vs hybrid % of healthcare hydrogel material value market 2025-2045
    • 1.11.5. Hydrogel enabling technology added by 5 functional categories $ billion 2025-2045
    • 1.11.6. Global healthcare expenditure vs healthcare hydrogel device market $ billion 2025-2045
    • 1.11.7. Solid-state cooling module market $ billion 2025-2045

2. Introduction

  • 2.1. Background
    • 2.1.1. Long history and companies involved today
    • 2.1.2. Many benefits
    • 2.1.3. Market drivers
    • 2.1.4. Contact lenses
  • 2.2. Formulations for healthcare hydrogels with advances in 2025
    • 2.2.1. Popular choices
    • 2.2.2. Biomimetic approach is very useful: 2025 and earlier
  • 2.3. Beware of the term gel
  • 2.4. Limitations
  • 2.5. Natural vs synthetic
  • 2.6. How hydrogel toxigens are an issue
  • 2.7. 23 examples of medical hydrogel advances and applications
  • 2.8. 19 examples of other healthcare-related hydrogel applications in six sectors beyond medical
  • 2.9. Wound healing advances in 2025
  • 2.10. Evolving production technologies for hydrogels including 3D and 4D printing in 2025

3. Hydrogel toolkit for healthcare 2025-2045

  • 3.1. Overview
  • 3.2. Hydrogel SWOT appraisal - where we are now
  • 3.3. Graphic of hydrogel market expansion across the landscape 2025-2045
  • 3.4. Hydrogel molecular toolkit and trends
  • 3.6. Six families of emerging hydrogel chemistry and functionality
  • 3.7. Future hydrogel enabling technology by six other categories covered in later chapters
  • 3.8. How silicones and polyurethanes will both compete with and combine with hydrogels
  • 3.9. How other emerging materials compete with hydrogels in latest research
  • 3.10. Most promising routes to improvement of hydrogels 2025-2045
    • 3.10.1. Biomimetic, composite and chemistry
    • 3.10.2. Appraisal of important new medical research: wound healing, sensorised and rejuvenated skin, easing Crohn's disease, restoring vision etc.
  • 3.11. Elastomer Hydrogel Systems EHS
    • 3.11.1. Basics
    • 3.11.2. Directly bonded or interphase
    • 3.11.13. Earlier work advancing multifunction and other elastomer hydrogels
  • 3.12. Hybrid hydrogels
  • 3.13. Self-healing hydrogels with infograms and SWOT appraisal

4. Future hydrogels that cool, pharmaceuticals, prosthetic, therapeutics, other

  • 4.1. Overview
  • 4.2. Infogram: Major new cooling and thermal management needs arrive 2025-2045
  • 4.3. Five infograms: The cooling toolkit and the hydrogel opportunity
  • 4.4. Hydrogel evaporative cooling in general
    • 4.4.1. Ambitions, limitations
    • 4.4.3. Hydrogel open evaporative cooling
  • 4.5. Future hydrogel technologies cooling of healthcare electronics, 6G telecommunications and solar panels
    • 4.5.1. Hydrogel-silica aerogel
    • 4.5.2. Thermogalvanic hydrogel for synchronous evaporative cooling
  • 4.6. Hydrogel cooling of solar panels including gathering useful water
  • 4.7. Imaginative new hydrogels in architectural cooling
    • 4.7.1. Hydroceramic hydrogel cooling architectural structure
    • 4.7.2. Hydrogel windows to block and store heat
  • 4.8. Aerogel and hydrogel together cool pharmaceuticals etc.
  • 4.9. Self-cooling smart actuator for soft robotics, prosthetics
  • 4.10. Other cooling hydrogels relevant to healthcare challenges 2025-2045

5. Future healthcare hydrogels in action, including self-healing function

  • 5.1. Definitions and focus
  • 5.2. Self-healing basics
    • 5.2.1. Self- healing material market drivers
    • 5.2.2. Intrinsic or extrinsic self-healing and value chain
    • 5.2.3. Types of damage addressed with examples: skin, bone, drug delivery
    • 5.2.4. The dilemma of metrics
  • 5.3. Importance of self-healing hydrogels in engineering and healthcare
  • 5.4. SWOT appraisal of self-healing materials in 2025
  • 5.5. Technology options for self-healing hydrogels
    • 5.5.1. Overview with wound-healing example
    • 5.5.2. Physical self-healing in hydrogels
    • 5.5.3. Chemical self-healing in hydrogels
  • 5.6. Hydrogel competitive place against alternatives in actual and potential self-healing applications
  • 5.7. Important examples in the research pipeline for 2025-2045
    • 5.7.1. Anti-fouling, water-oil separation, liquid transportation
    • 5.7.2. Bone regeneration
    • 5.7.3. Drug-delivery and cancer therapy injectable hydrogels
    • 5.7.4. Electrical conductors for electronics and medical purposes
    • 5.7.5. Remote near-infrared-responsive controls
    • 5.7.6. Self-lubricating water-based polymeric systems
    • 5.7.7. Self-healing sensors
    • 5.7.8. Solid state and other electrolytes
    • 5.7.9. Spinal cord implants for treating paralysis
    • 5.7.10. Soft robotics, smart prosthetics, bioelectronics, cartilage
    • 5.7.11. Stretchable hydrogels for protein delivery etc.
    • 5.7.12. Tissue engineering
    • 5.7.13. Triboelectric and piezoelectric hydrogel nanogenerators
    • 5.7.14. Adhesive hydrogels

6. Future hydrogel membranes, skin and film: ion-exchange, gas separation, other

  • 6.1. Overview
  • 6.2. Membrane difficulty levels and needs for self-healing
  • 6.3. Self-healing membrane chemistry in recent studies
  • 6.4. Basics
  • 6.5. Architectural and acoustic membranes
  • 6.6. Battery, supercapacitor, fuel cell separators and electrolyte membrane
  • 6.7. Electronic skin, e-skin for humans and robots
    • 6.7.1. Overview
    • 6.7.2. Hydrogel e-skin
  • 6.8. Gas separation
    • 6.8.1. Carbon dioxide
    • 6.8.2. General
  • 6.9. Ionic conductors
  • 6.10. Ultrafiltration membrane

7. Future hydrogel flexible electronics, sensors and solid-state energy storage

  • 7.1. Overview
    • 7.1.1. Motivation
    • 7.1.2. Chosen chemical routes: carbon, polymer, biopolymer, biomass
    • 7.1.3. Biopolymer hydrogel routes
  • 7.2. Flexible and solid-state energy storage examples
    • 7.2.1. Zinc-air battery electrolyte
    • 7.2.2. Supercapacitors, fuel cells and water electrolysers
    • 7.2.3. Biopolymer-based hydrogel electrolytes
    • 7.2.4. Supercapacitors
  • 7.3. Magneto-responsive hydrogels for biotechnological and environmental applications
  • 7.4. Sensors and sensing
  • 7.5. Transistors
  • 7.6. Thermal hydrogels for electronics

8. Engineered Living Materials ELM using or competing with hydrogels

  • 8.1. Overview
    • 8.1.1. Engineered Living Materials ELM with SWOT appraisal
    • 8.1.2. Hydrogels popular in Engineered Living Materials ELM
    • 8.1.3. Engineered Living Hydrogels ELH and their competition
    • 8.1.4. ELM hype curve 2025-2045
    • 8.1.5. Infogram: Some features of engineered living materials
  • 8.2. Learning from nature
  • 8.3. Typical features and materials
  • 8.4. Taxonomy
  • 8.5. Obstacles and the way forward
    • 8.5.1. Obstacles
    • 8.5.2. Bio ELM vs hybrid ELM
    • 8.5.3. Examples of specific approaches
  • 8.6. Examples of living material in ELM research
    • 8.6.1. Funghi-mycelial materials
    • 8.6.2. Bacterial
    • 8.6.3. Other examples of self-healing ELM research
    • 8.6.4. Further reading

9. Future hydrogel materials in healthcare infrastructure and water management

  • 9.1. Overview
  • 9.2. Concrete and other cementitious materials
    • 9.2.1. Inducing hydrogel in concrete
    • 9.2.2. Aquron and Markham New Zealand
    • 9.2.3. Hydrogel Concrete Solutions Australia
    • 9.2.4. Intelligent Concrete USA
    • 9.2.5. Polyacrylic hydrogel in cement composites
    • 9.2.6. Hydrogels containing nanosilica enhance cement pastes
    • 9.2.7. Improved concrete using hydrogel-based internal curing agents
  • 9.3. Safe drinking water using hydrogels
  • 9.4. Hydrogels and alternatives extracting useful water from the air
    • 9.4.1. Metal oxide frameworks competing with hydrogels
    • 9.4.2. Water harvesting even while warming
  • 9.5. Precious metal recovery with reusable hydrogel