封面
市場調查報告書
商品編碼
1737131

全球原子力顯微鏡市場規模(按類型、應用、地區、預測)

Global Atomic Force Microscopes Market Size By Type, By Application, By Geographic Scope And Forecast

出版日期: | 出版商: Verified Market Research | 英文 202 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

原子力顯微鏡的市場規模及預測

2024 年原子力顯微鏡市場規模價值為 5.4 億美元,預計到 2032 年將達到 7.8281 億美元,2026 年至 2032 年的複合年成長率為 5.37%。

全球原子力顯微鏡市場:促進因素

原子力顯微鏡 (AFM) 市場促進因素可能受到多種因素的影響,其中包括:

奈米技術調查:奈米技術研究:材料科學、生物學和半導體工業等各個學科對奈米技術研究的日益重視,導致對 AFM 等高解析度成像和表徵工具的需求增加。

材料科學發展:在奈米尺度上準確表徵材料對於該領域的持續發展至關重要。原子力顯微鏡 (AFM) 是材料科學研究和發展的重要工具,因為它能夠提供有關表面形貌、機械性能和電氣性能的全面數據。

生命科學應用:原子力顯微鏡 (AFM) 對生命科學研究至關重要,因為它能夠對生物樣本進行奈米級成像和分析。研究 DNA、蛋白質和細胞等生物結構對於理解疾病病因、研發新藥和發展再生醫學至關重要。

半導體領域:原子力顯微鏡 (AFM) 在半導體領域用於故障分析、製程開發和品管。隨著半導體裝置變得越來越小、越來越複雜,對原子力顯微鏡 (AFM) 等精密測量儀器的需求也日益增加。

新興國家的應用日益普及:原子力顯微鏡 (AFM) 技術在亞太和拉丁美洲等新興國家/地區正變得越來越普及且價格實惠。產業界、學術實驗室和研究機構不斷增強的研發能力正在推動這一成長。

技術發展:AFM 技術的不斷改進,例如更快的掃描速度、更高的解析度和更高的自動化程度,使儀器更具適應性、更易於使用,並能夠滿足更廣泛的應用,有助於擴大市場。

多模態成像需求:對於能夠結合光學顯微鏡、掃描電子顯微鏡 (SEM) 和光譜等附加技術以提供多模態成像的原子力顯微鏡 (AFM) 的需求日益成長。這種整合技術使研究人員能夠更詳細地探測樣品特性,並提供互補數據。

全球原子力顯微鏡市場:限制因素

原子力顯微鏡 (AFM) 市場面臨許多限制和挑戰,其中包括:

高成本:採購和維護高成本會限制 AFM 系統的採用,尤其是在預算有限的小型研究實驗室和大學。

複雜性:AFM 技術需要一定的訓練和知識才能正常運作。操作的複雜性可能令人望而生畏,需要額外的訓練投入。

吞吐量有限:與 TEM(穿透式電子顯微鏡)和 SEM(掃描電子顯微鏡)等其他成像技術相比,AFM 測量需要很長時間,這可能會阻礙其在涉及大量樣本的應用中使用。

樣品製備:根據樣品和材料的不同,製備用於AFM成像的樣品可能既費力又具有挑戰性。可能需要特定的樣品條件,例如平坦的表面或合適的基板。

解析度限制:儘管解析度很高,AFM 仍無法分辨所有奈米結構和特徵,尤其是在複雜的樣品環境中。

設備穩定性:溫度、濕度和振動的波動會影響AFM測量的準確性。確保穩定的精確測量環境可能需要投資新的基礎設施和設備。

來自替代技術的競爭:AFM 面臨來自替代顯微鏡方法的競爭,例如掃描探針顯微鏡 (SPM) 和電子顯微鏡 (EM),這些方法可能在解析度、吞吐量和易用性方面提供優勢(取決於具體應用)。

技術發展:如果新方法以相同或更低的價格提供更好的性能或功能,顯微鏡和成像技術的快速進步可能會對 AFM 系統市場構成挑戰。

監管障礙:需要遵守法規,特別是在生物技術和製藥等行業,這可能會使 AFM 技術的採用變得困難且耗時。

應用範圍有限:儘管AFM適應性很強,但與其他顯微鏡技術相比,其應用範圍有限,這可能會阻礙其對某些公司和行業的商業潛力。

目錄

第1章:全球原子力顯微鏡市場簡介

  • 市場定義
  • 市場區隔
  • 調查時間表
  • 先決條件
  • 限制

第 2 章 已驗證的市場研究調查方法

  • 資料探勘
  • 數據三角測量
  • 自下而上的方法
  • 自上而下的方法
  • 調查流程
  • 業界專家的重要見解
  • 資料來源

第3章執行摘要

  • 市場概覽
  • 生態測繪
  • 絕對的商機
  • 市場吸引力
  • 全球原子力顯微鏡市場的區域分析
  • 全球原子力顯微鏡市場(按類型)
  • 全球原子力顯微鏡市場(按應用)
  • 未來市場機會
  • 原子力顯微鏡的全球市場
  • 產品生命線

第4章 原子力顯微鏡全球市場展望

  • 原子力顯微鏡的全球發展
  • 驅動程式
  • 限制因素
  • 機會
  • 波特五力模型
  • 價值鏈分析
  • 定價分析
  • 宏觀經濟分析

第5章全球原子力顯微鏡市場(按類型)

  • 概述
  • 工業級 AFM
  • 研究級AFM

第6章全球原子力顯微鏡市場(依應用)

  • 概述
  • 生命科學與生物學
  • 半導體和電子
  • 奈米材料科學
  • 其他

7. 全球原子力顯微鏡市場(按地區)

  • 概述
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 中國
    • 日本
    • 印度
    • 其他亞太地區
  • 拉丁美洲
    • 陶氏化學巴西
    • 阿根廷
    • 其他拉丁美洲
  • 中東和非洲
    • 阿拉伯聯合大公國
    • 沙烏地阿拉伯
    • 南非
    • 其他中東和非洲地區

第8章全球原子力顯微鏡市場競爭格局

  • 概述
  • 各公司市場排名
  • 主要進展
  • 公司地理分佈
  • 公司產業足跡
  • ACE矩陣

第9章 公司簡介

  • Bruker Corporation
  • NT-MDT
  • Keysight Technologies
  • Park Systems
  • Witec
  • Asylum Research
  • Nanonics Imaging
  • Nanosurf
  • Hitachi High-Technologies
  • RHK Technology
  • APE Research
  • JPK Instruments

第10章 已驗證的市場情報

  • 關於已驗證的市場情報
  • 動態資料視覺化
簡介目錄
Product Code: 52153

Atomic Force Microscopes Market Size And Forecast

Atomic Force Microscopes Market size was valued at USD 540 Million in 2024 and is projected to reach USD 782.81 Million by 2032, growing at a CAGR of 5.37% during the forecast period 2026-2032.

Global Atomic Force Microscopes Afm Market Drivers

The market drivers for the Atomic Force Microscopes Afm Market can be influenced by various factors. These may include:

Nanotechnology Research: High-resolution imaging and characterization tools like AFMs are becoming more and more in demand as a result of the increased emphasis on nanotechnology research in a variety of domains, including materials science, biology, and the semiconductor industry.

Developments in Material Science: Accurate characterization of materials at the nanoscale level is essential to the field's continued progress. AFMs are crucial instruments in the study and advancement of material science because they offer comprehensive data on surface topography, mechanical characteristics, and electrical properties.

Applications in the Life Sciences: Because AFMs make it possible to image and analyze biological samples at the nanoscale, they are extremely important for life sciences research. Studying biological structures such as DNA, proteins, and cells is essential for comprehending disease causes, finding new drugs, and regenerative medicine.

Semiconductor sector: AFMs are utilized in the semiconductor sector for failure analysis, process development, and quality control. Precise metrology instruments such as AFMs are becoming more and more necessary as the market for smaller and more sophisticated semiconductor devices rises.

Growing Adoption in Emerging countries: AFM technology is becoming more widely used in emerging countries like Asia-Pacific and Latin America as it becomes more widely available and reasonably priced. The expansion of R&D capabilities by industries, university laboratories, and research institutes is the driving force behind this rise.

Technological Developments: Continuous improvements in AFM technology, such as quicker scanning rates, increased resolution, and enhanced automation, are propelling market expansion by increasing the instruments' adaptability, usability, and capacity to handle a larger range of applications.

Demand for Multi-Modal Imaging: AFMs that combine AFM with additional methods like optical microscopy, scanning electron microscopy (SEM), and spectroscopy to provide multi-modal imaging are in high demand. Researchers are able to characterize samples more thoroughly because to this integration, which offers supplementary data.

Global Atomic Force Microscopes Afm Market Restraints

Several factors can act as restraints or challenges for the Atomic Force Microscopes Afm Market. These may include:

High Cost: The adoption of AFM systems might be restricted by their high cost of procurement and maintenance, particularly for smaller research facilities or universities with tighter budgets.

Complexity: To function properly, AFM technology needs certain training and knowledge. Some potential users may be discouraged by the complexity of the operation or may need to invest more in training.

Limited Throughput: Compared to other imaging methods like TEM (transmission electron microscopy) or SEM (scanning electron microscopy), AFM measurements can take a long time. This drawback may prevent it from being used in large sample throughput applications.

Sample Preparation: Preparing samples for AFM imaging can be labor-intensive and difficult for some samples or materials. Specific sample conditions, such as flat surfaces and suitable substrates, may be necessary.

Resolution Restrictions: AFM may not always be able to resolve all nanostructures or features, particularly in complex sample settings, despite its high-resolution capabilities.

Instrumentation Stability: Variations in temperature, humidity, and vibration can have an impact on the accuracy of AFM measurements. It could be necessary to invest in new infrastructure or equipment to ensure steady conditions for precise measurements.

Rivalry from Alternative Techniques: AFM faces competition from alternative microscopy methods including scanning probe microscopy (SPM) and electron microscopy (EM). Alternative methods may be more advantageous in terms of resolution, throughput, or usability, depending on the particular application.

Technological Developments: If emerging methods provide better performance or capabilities at a comparable or cheaper price, the market for AFM systems may face difficulties due to the quick progress in microscopy and imaging technology.

Regulatory Obstacles: Adopting AFM technology can be made more difficult and time-consuming by the need to comply with regulations, particularly in industries like biotechnology and pharmaceuticals.

Restricted Application Range: Although AFM is very adaptable, its business potential in some companies or fields may be hindered by its limited application range when compared to alternative microscopy techniques.

Global Atomic Force Microscopes Market Segmentation Analysis

The Global Atomic Force Microscopes Market is segmented on the basis of Type, Application, and Geography.

Atomic Force Microscopes Market, By Type

  • Industrial Grade AFM
  • Research Grade AFM

Based on Type, The market is segmented into Industrial Grade AFM and Research Grade AFM. The Industrial Grade AFM segment is anticipated to dominate the Global Atomic Force Microscopes market because of its accuracy in detecting and visualizing even the tiniest surface features.

Atomic Force Microscopes Market, By Application

  • Life Sciences and Biology
  • Semiconductors and Electronics
  • Nanomaterials science
  • Others

Based on Application, The market is segmented into Life Sciences and Biology, Semiconductors and Electronics, Nanomaterials science, and Others. The Life Sciences and Biology segment is anticipated to dominate the Global Atomic Force Microscopes market. Examining the structure and characteristics of diverse biological materials allows researchers to photograph and analyze biological samples in high resolution.

Atomic Force Microscopes Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the world
  • On the basis of Regional Analysis, Global Atomic Force Microscopes is classified into North America, Europe, Asia Pacific, and the Rest of the world. Asia Pacific will hold the largest Global Atomic Force Microscopes market. Growing expertise and academic brilliance, more significant nanotechnology research, higher R&D investment for microscope development, and the affordability of nanomaterials are all aspects boosting the market in APAC.

Key Players

  • The major players in the Atomic Force Microscopes Market are:
  • Bruker Corporation
  • NT-MDT
  • Keysight Technologies
  • Park Systems
  • Witec
  • Asylum Research
  • Nanonics Imaging
  • Nanosurf
  • Hitachi High-Technologies
  • RHK Technology
  • A.P.E. Research
  • JPK Instruments

TABLE OF CONTENTS

1 INTRODUCTION OF THE GLOBAL ATOMIC FORCE MICROSCOPES MARKET

  • 1.1 Market Definition
  • 1.2 Market Segmentation
  • 1.3 Research Timelines
  • 1.4 Assumptions
  • 1.5 Limitations

2 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 2.1 Data Mining
  • 2.2 Data Triangulation
  • 2.3 Bottom-Up Approach
  • 2.4 Top-Down Approach
  • 2.5 Research Flow
  • 2.6 Key Insights from Industry Experts
  • 2.7 Data Sources

3 EXECUTIVE SUMMARY

  • 3.1 Market Overview
  • 3.2 Ecology Mapping
  • 3.3 Absolute Market Opportunity
  • 3.4 Market Attractiveness
  • 3.5 Global Atomic Force Microscopes Market Geographical Analysis (CAGR %)
  • 3.6 Global Atomic Force Microscopes Market, By Type (USD Million)
  • 3.7 Global Atomic Force Microscopes Market, By Application (USD Million)
  • 3.8 Future Market Opportunities
  • 3.9 Global Market Split
  • 3.10 Product Life Line

4 GLOBAL ATOMIC FORCE MICROSCOPES MARKET OUTLOOK

  • 4.1 Global Atomic Force Microscopes Evolution
  • 4.2 Drivers
    • 4.2.1 Driver1
    • 4.2.2 Driver 2
  • 4.3 Restraints
    • 4.3.1 Restraint1
    • 4.3.2 Restraint 2
  • 4.4 Opportunities
    • 4.4.1 Opportunity1
    • 4.4.2 Opportunity 2
  • 4.5 Porters Five Force Model
  • 4.6 Value Chain Analysis
  • 4.7 Pricing Analysis
  • 4.8 Macroeconomic Analysis

5 GLOBAL ATOMIC FORCE MICROSCOPES MARKET, BY TYPE

  • 5.1 Overview
  • 5.2 Industrial Grade AFM
  • 5.3 Research Grade AFM

6 GLOBAL ATOMIC FORCE MICROSCOPES MARKET, BY APPLICATION

  • 6.1 Overview
  • 6.2 Life Sciences and Biology
  • 6.3 Semiconductors and Electronics
  • 6.4 Nanomaterials science
  • 6.5 Others

7 GLOBAL ATOMIC FORCE MICROSCOPES MARKET, BY GEOGRAPHY

  • 7.1 Overview
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
    • 7.2.3 Mexico
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 U.K.
    • 7.3.3 France
    • 7.3.4 Italy
    • 7.3.5 Spain
    • 7.3.6 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 Japan
    • 7.4.3 India
    • 7.4.4 Rest of Asia Pacific
  • 7.5 Latin America
    • 7.5.1 Dow Chemical Company Brazil
    • 7.5.2 Argentina
    • 7.5.3 Rest of Latin America
  • 7.6 Middle-East and Africa
    • 7.6.1 UAE
    • 7.6.2 Saudi Arabia
    • 7.6.3 South Africa
    • 7.6.4 Rest of Middle-East and Africa

8 GLOBAL ATOMIC FORCE MICROSCOPES MARKET COMPETITIVE LANDSCAPE

  • 8.1 Overview
  • 8.2 Company Market Ranking
  • 8.3 Key Developments
  • 8.4 Company Regional Footprint
  • 8.5 Company Industry Footprint
  • 8.6 ACE Matrix

9 COMPANY PROFILES

  • 9.1 Bruker Corporation
    • 9.1.1 Company Overview
    • 9.1.2 Company Insights
    • 9.1.3 Product Benchmarking
    • 9.1.4 Key Development
    • 9.1.5 Winning Imperatives
    • 9.1.6 Current Focus & Strategies
    • 9.1.7 Threat from Competition
    • 9.1.8 SWOT Analysis
  • 9.2 NT-MDT
    • 9.2.1 Company Overview
    • 9.2.2 Company Insights
    • 9.2.3 Product Benchmarking
    • 9.2.4 Key Development
    • 9.2.5 Winning Imperatives
    • 9.2.6 Current Focus & Strategies
    • 9.2.7 Threat from Competition
    • 9.2.8 SWOT Analysis
  • 9.3 Keysight Technologies
    • 9.3.1 Company Overview
    • 9.3.2 Company Insights
    • 9.3.3 Product Benchmarking
    • 9.3.4 Key Development
    • 9.3.5 Winning Imperatives
    • 9.3.6 Current Focus & Strategies
    • 9.3.7 Threat from Competition
    • 9.3.8 SWOT Analysis
  • 9.4 Park Systems
    • 9.4.1 Company Overview
    • 9.4.2 Company Insights
    • 9.4.3 Product Benchmarking
    • 9.4.4 Key Development
    • 9.4.5 Winning Imperatives
    • 9.4.6 Current Focus & Strategies
    • 9.4.7 Threat from Competition
    • 9.4.8 SWOT Analysis
  • 9.5 Witec
    • 9.5.1 Company Overview
    • 9.5.2 Company Insights
    • 9.5.3 Product Benchmarking
    • 9.5.4 Key Development
    • 9.5.5 Winning Imperatives
    • 9.5.6 Current Focus & Strategies
    • 9.5.7 Threat from Competition
    • 9.5.8 SWOT Analysis
  • 9.6 Asylum Research
    • 9.6.1 Company Overview
    • 9.6.2 Company Insights
    • 9.6.3 Product Benchmarking
    • 9.6.4 Key Development
    • 9.6.5 Winning Imperatives
    • 9.6.6 Current Focus & Strategies
    • 9.6.7 Threat from Competition
    • 9.6.8 SWOT Analysis
  • 9.7 Nanonics Imaging
    • 9.7.1 Company Overview
    • 9.7.2 Company Insights
    • 9.7.3 Product Benchmarking
    • 9.7.4 Key Development
    • 9.7.5 Winning Imperatives
    • 9.7.6 Current Focus & Strategies
    • 9.7.7 Threat from Competition
    • 9.7.8 SWOT Analysis
  • 9.8 Nanosurf
    • 9.8.1 Company Overview
    • 9.8.2 Company Insights
    • 9.8.3 Product Benchmarking
    • 9.8.4 Key Development
    • 9.8.5 Winning Imperatives
    • 9.8.6 Current Focus & Strategies
    • 9.8.7 Threat from Competition
    • 9.8.8 SWOT Analysis
  • 9.9 Hitachi High-Technologies
    • 9.9.1 Company Overview
    • 9.9.2 Company Insights
    • 9.9.3 Product Benchmarking
    • 9.9.4 Key Development
    • 9.9.5 Winning Imperatives
    • 9.9.6 Current Focus & Strategies
    • 9.9.7 Threat from Competition
    • 9.9.8 SWOT Analysis
  • 9.10 RHK Technology
    • 9.10.1 Company Overview
    • 9.10.2 Company Insights
    • 9.10.3 Product Benchmarking
    • 9.10.4 Key Development
    • 9.10.5 Winning Imperatives
    • 9.10.6 Current Focus & Strategies
    • 9.10.7 Threat from Competition
    • 9.10.8 SWOT Analysis
  • 9.11 A.P.E. Research
    • 9.11.1 Company Overview
    • 9.11.2 Company Insights
    • 9.11.3 Product Benchmarking
    • 9.11.4 Key Development
    • 9.11.5 Winning Imperatives
    • 9.11.6 Current Focus & Strategies
    • 9.11.7 Threat from Competition
    • 9.11.8 SWOT Analysis
  • 9.12 JPK Instruments
    • 9.12.1 Company Overview
    • 9.12.2 Company Insights
    • 9.12.3 Product Benchmarking
    • 9.12.4 Key Development
    • 9.12.5 Winning Imperatives
    • 9.12.6 Current Focus & Strategies
    • 9.12.7 Threat from Competition
    • 9.12.8 SWOT Analysis

10. VERIFIED MARKET INTELLIGENCE

  • 10.1 About Verified Market Intelligence
  • 10.2 Dynamic Data Visualization