封面
市場調查報告書
商品編碼
1747343

放射線遮蔽玻璃市場:現狀分析與預測(2025-2033年)

Radiation Shielding Glass Market: Current Analysis and Forecast (2025-2033)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 138 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

預計在預測期內(2025-2033),輻射屏蔽玻璃市場將以5.91%的強勁速度成長。輻射屏蔽玻璃的出現是安全工程材料進步和現代化過程中的巨大飛躍。這些材料不僅主要關注功能安全需求,還兼顧建築整合和美觀。這種玻璃最初是為醫療和核環境開發的,如今已在影像室、核反應器和工業X光機等高輻射區域提供智慧安全保護。現代輻射屏蔽玻璃採用各種鉛和無鉛配方,以確保光學透明度,同時平衡可見度和輻射衰減。這些玻璃配方含有鋇、鉍和稀土氧化物等元素,可阻擋X射線、γ射線和其他電離輻射,同時保持透明度。 STERIS宣布,將於2024年4月擴建位於泰國春武里府一號工廠,提升其X射線處理能力。此次擴建將升級其目前在春武里府一號和春武里府二號工廠提供的伽馬輻照服務,並提升這些工廠安全可靠地處理X射線製程和X射線設備的能力,預計這將創造對輻射屏蔽玻璃的需求。

輻射屏蔽玻璃市場按類型細分為鉛玻璃和無鉛玻璃。預計到2024年,無鉛玻璃市場將佔據主導地位,並在整個預測期內保持領先地位。轉向無鉛解決方案的模式是由於各國不斷加強的環境法規和永續發展舉措,此類玻璃被宣傳為更環保的解決方案。無鉛輻射屏蔽玻璃含有鋇、鉍和其他重金屬氧化物等化合物,可提供相同的屏蔽效果,但不含有毒的鉛元素。這些變革,加上診斷影像、核醫和清潔能源研究的快速發展,正在推動對更高層級屏蔽解決方案的需求,這些解決方案需要兼顧安全性、光學性能和建築結構。在模組化、透明醫療基礎設施的新時代,屏蔽玻璃不僅因其功能性,還因其設計而成為透明屏蔽解決方案。此外,隨著醫療和核子領域安全法規的不斷加強,製造商正在投資輕質、可自訂且高度透明的屏蔽材料。因此,輻射屏蔽玻璃正成為醫院、實驗室、控制室和工業設施的理想解決方案,體現了安全性、永續性和靈活的設計。

依輻射類型劃分,輻射屏蔽玻璃市場分為X射線屏蔽、伽瑪射線屏蔽和中子屏蔽。 X射線屏蔽領域在2024年佔據了最大的市場佔有率,預計在預測期內將保持不變。這種主導地位是由醫療診斷、牙科和工業檢測中的X光成像應用所推動的。用於X射線防護的輻射屏蔽玻璃具有高透明度和光學清晰度,以及強大的衰減特性,使其成為醫院、實驗室和控制室觀察窗的理想材料。隨著安全標準日益嚴格,以及全球診斷影像需求的不斷增長,製造商已開始使用更先進的輻射屏蔽材料,例如無鉛鉍和鋇基玻璃。此類玻璃不僅能提供更佳的輻射防護,而且環保。這些玻璃重量輕、抗衝擊且易於成型,非常適合現代醫療設施的設計,在這些設施中,可視性、衛生性和模組化設計同樣重要。便攜式和小型機器的日益普及,帶來了對客製化屏蔽玻璃需求的重大變化,以滿足各種需求。目前,這些材料的演變帶來了更多的設計選擇,融入了永續的建築技術,並降低了安裝的複雜性。這進一步增強了這些產品在公共和私人醫療基礎設施中的應用。

輻射屏蔽玻璃市場按應用細分為醫療、工業和核能領域。 2024年,醫療領域佔據市場主導地位,預計在預測期內仍將維持領先地位。這主要得益於醫院和診斷中心影像診斷技術(例如X光、CT和透視檢查)的持續發展。輻射屏蔽玻璃在醫療領域發揮積極作用,它能夠確保安全觀察,並為護理人員和患者提供最高水準的輻射防護。輻射屏蔽玻璃的現代應用包括成為開放透明醫療設施佈局中的美學元素和積極的建築特徵,當然,這不會損害安全性。隨著醫療保健系統向精準診斷和微創手術發展,對超白、無鉛和無鉛屏蔽玻璃的需求顯著增長。同時,臨床環境中輻射安全法規的日益嚴格,促使公共和私人醫療基礎設施中輻射屏蔽玻璃的安裝數量不斷增加。隨著全球醫療基礎設施建設的蓬勃發展,對模組化和行動診斷設備的關注度日益提高,市場也獲得了進一步的推動。隨著已開發經濟體和新興經濟體的醫學影像技術日益複雜,輻射屏蔽玻璃在診斷套件中佔據核心地位,確保其安全性、合規性和患者友善性。 2023年12月,銳珂醫療公司 (Carestream Health) 推出了先進的數位影像解決方案-DRX-Rise 行動X射線系統。

為了更深入了解輻射屏蔽玻璃市場,我們根據其在北美(美國、加拿大和其他北美地區)、歐洲(德國、英國、法國、義大利、西班牙和其他歐洲地區)、亞太地區(中國、日本、印度、韓國和其他亞太地區)以及世界其他地區的全球分佈情況對其進行了分析。預計北美輻射屏蔽玻璃市場將在2024年佔據全球輻射屏蔽玻璃市場的主導地位,並在預測期內保持這一地位。這種主導地位主要歸功於該地區先進的醫療基礎設施、豐富的成像程序以及嚴格的輻射安全法規合規性。在美國,政府持續投入資金升級醫院設施並整合輻射安全建築材料,使輻射屏蔽玻璃成為醫學和牙科影像實驗室、腫瘤科、移動診斷單元等的標準配置。此外,高度發展的核電廠和眾多需要高技術輻射防護材料的研究中心的存在,也進一步刺激了輻射屏蔽玻璃的需求。此外,醫療保健和國防領域對環保無鉛屏蔽解決方案和模組化建築方法的日益青睞,也促進了市場的成長。北美地區主要製造商的持續技術創新以及政府旨在促進健康和安全的政策,也使北美成為一個成熟且重要的輻射屏蔽玻璃市場。

市場主要參與者包括康寧公司、蕭特股份公司、日本電氣硝子株式會社、RAY-BAR ENGINEERING CORP、Nuclear Lead Co.Ltd.、Radiation Protection Products, Inc.、Lead Glass Pro.、MAVIG GmbH、Midland Lead、MarShieldus Custom Radiation ing 等。

目錄

第1章 市場簡介

  • 市場定義
  • 主要目的
  • 相關利益者
  • 限制事項

第2章 調查手法或前提條件

  • 調查流程
  • 調查手法
  • 受訪者簡介

第3章 摘要整理

  • 產業摘要
  • 各市場區隔預測
    • 市場成長的強度
  • 地區展望

第4章 市場動態

  • 促進因素
  • 機會
  • 阻礙因素
  • 趨勢
  • PESTEL分析
  • 需求面分析
  • 供給方面分析
    • 合併和收購
    • 投資情勢
    • 產業洞察:關鍵新創公司及其獨特策略

第5章 價格分析

  • 地區價格分析
  • 價格的影響因素

第6章 全球放射線遮蔽玻璃市場收益,2023-2033年

第7章 市場洞察:類別

  • 鉛玻璃
  • 無鉛玻璃

第8章 市場洞察:放射線類別

  • X光遮蔽
  • 伽馬射線遮蔽
  • 中子遮蔽

第9章 市場洞察:各用途

  • 醫療
  • 產業
  • 核能

第10章 市場洞察:各地區

  • 北美
    • 美國
    • 加拿大
    • 其他北美地區
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 其他歐洲地區
  • 亞太地區
    • 中國
    • 日本
    • 印度
    • 韓國
    • 其他亞太地區
  • 全球其他地區

第11章 價值鏈分析

  • 限制分析
  • 市場參與企業清單

第12章 競爭情形

  • 競爭儀表板
  • 競爭的市場定位分析
  • 波特五力分析

第13章 企業簡介

  • Corning Incorporated
  • SCHOTT AG
  • Nippon Electric Glass Co., Ltd.
  • RAY-BAR ENGINEERING CORP
  • Nuclear Lead Co. Inc.
  • Radiation Protection Products, Inc.
  • Lead Glass Pro.
  • MAVIG GmbH
  • Midland Lead
  • MarShield Custom Radiation Shielding

第14章 縮寫與前提條件

第15章 附錄

簡介目錄
Product Code: UMCH213309

The Radiation Shielding Glass Market is witnessing a robust growth rate of 5.91% within the forecast period (2025- 2033F). Radiation shielding glass was indeed a giant leap in the advancement and modernization of safety-engineered materials. These materials have not only functional security needs as the primary concern, but also architectural integration and aestheticization. Originally developed for medical and nuclear environments, this type of glass has now become an intelligent safety enabler in high-radiation areas such as diagnostic imaging rooms, nuclear reactors, and industrial radiography units. Modern radiation shielding glass weighs various lead and lead-free formulations for optical clarity while balancing visibility vs. radiation attenuation. The concoction of such glasses containing elements like barium, bismuth, and rare earth oxides would reject X-rays, gamma rays, and other ionizing radiation while remaining transparent. STERIS announced an expansion of its Chonburi I facility in Thailand, which is capable of X-ray processing, in April 2024. This expansion will upgrade the gamma irradiation services currently available at the Chonburi I and Chonburi II facilities and is expected to create demand for radiation shielding glass as these facilities develop their capacity for the safe and secure handling of X-ray processes and apparatus.

Based on type, the radiation shielding glass market is segmented into Lead Glass and Lead-Free Glass. In 2024, the lead-free glass market dominated and is expected to maintain its leading position throughout the forecast period. The paradigm shift toward lead-free solutions is due to the growing environmental regulations and sustainability efforts across countries, and such glass is marketed as a greener solution. In this spectrum, lead-free radiation shielding glass includes barium, bismuth, and other heavy metal oxides, which offer comparable shielding but lack the toxic lead element. This transformation and the rapid expansion of diagnostic imaging, nuclear medicine, and clean-energy research have increased the demand for higher shielding solutions that merge safety, optical performance, and architecture. With the new world of modular and transparent healthcare infrastructure, shielding glass is used not just for function but for design-transparent shielding solutions. Furthermore, manufacturers, amid a tightening regulatory environment around safety in medical and nuclear arenas, invest in lighter, customizable, and highly transparent shielding materials. From this perspective, radiation shielding glass is becoming the solution for hospitals, laboratories, control rooms, and industrial facilities, embodying safety, sustainability, and flexible design.

Based on radiation type, the radiation shielding glass market is segmented into X-Ray Shielding, Gamma Ray Shielding, and Neutron Shielding. The X-Ray shielding segment held the largest market share in 2024 and is expected to behave in the same fashion in the forecast period. This dominance is driven by X-ray imaging applications in medical diagnostics, dentistry, and industrial inspections. Radiation shielding glass for X-ray protection has high transparency and optical clarity, apart from a strong attenuation property that makes it an appropriate material for observation windows in hospitals, laboratories, and control rooms. With safety standards becoming stringent and the need for imaging being ever-expanding across the world, manufacturers have started using more sophisticated materials such as lead-free bismuth or barium-based glass for radiation shielding. Such glass provides good radiation protection and is environmentally friendly. These glasses are light, impact-resistant, and can be shaped easily, making them suitable for the design of modern medical facilities where the elements of visibility, hygiene, and modularity are given equal importance. The elevated use of portable and small-sized machines has brought tremendous changes in increasing demand for shielding glass solutions customized to requirements. At present, the evolution of these materials is allowing for more design options, incorporating sustainable building technologies, and reduced complexities in installation. This has further enhanced the use of these products in both public and private healthcare infrastructure.

Based on applications, the radiation shielding glass market is segmented into Medical, Industrial, and Nuclear Energy. In 2024, the medical segment dominated the market and is expected to maintain its leading position throughout the forecast period. This is mainly attributable to the persistent development of the hospital and diagnostic center-based diagnostic imaging technologies such as X-ray, CT, and fluoroscopy. Radiation shielding glass works in medical environments by permitting safe observation and providing the highest level of radiation protection to nurses and patients. Modern purposes of radiation shielding glass can include being an aesthetic element and an active architectural feature in open and transparent medical facility layouts without compromising on safety, of course. With the healthcare system devolving into precision diagnostics and minimally invasive procedures, the demand for super-clear, lead, and lead-free shielding glass has seen tremendous growth; on the other hand, with the rise in radiological safety regulations across clinical settings, installations have witnessed a growing number across both public and private health infrastructures. The market finds additional impetus in the increasing thrust laid on modular, mobile diagnostic units, along with the concurrent global thrust on healthcare infrastructure development. With medical imaging soaring higher and farther between developed and developing economies, radiation shielding glass sits at the core of the diagnostic set-up, making it safe, compliant, and friendly to patients. In December 2023, Carestream Health launched the DRX-Rise Mobile X-Ray System advanced digital imaging solution-imparting a cost-effective pathway for customers to either choose or increase their digital X-ray capabilities.

For a better understanding of the market of the radiation shielding glass market, the market is analyzed based on its worldwide presence in countries such as North America (The US, Canada, and Rest of North America), Europe (Germany, The UK, France, Italy, Spain, Rest of Europe), Asia-Pacific (China, Japan, India, South Korea, Rest of Asia-Pacific), Rest of World. The North America radiation shielding glass market dominated the global radiation shielding glass market in 2024 and is forecasted to remain in this position in the forecast period. This dominance is primarily led by the region's advanced healthcare infrastructure, a large number of diagnostic imaging procedures, and stringent regulatory compliance concerning radiation safety. In the United States, investments have been made consistently to upgrade hospitals, integrate radiation-safe construction materials, wherein the radiation shielding glass has become a standard option across medical and dental imaging rooms, oncology departments, and mobile diagnostic units. Further, the presence of highly developed nuclear power and several research centers that require highly technical radiation protection materials enhances a rather high demand. Growth in the market is further supplemented by increased preference for environmentally friendly lead-free shielding solutions and the modular construction approach adopted in the healthcare and defense sectors. Also, continuous technological innovation undertaken by key manufacturers in the region and health as well and safety-promoting government policies make North America a mature and crucial market for radiation shielding glass.

Some of the major players operating in the market include Corning Incorporated, SCHOTT AG, Nippon Electric Glass Co., Ltd., RAY-BAR ENGINEERING CORP, Nuclear Lead Co. Inc., Radiation Protection Products, Inc., Lead Glass Pro., MAVIG GmbH, Midland Lead, and MarShield Custom Radiation Shielding.

TABLE OF CONTENTS

1.Market Introduction

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.Research Methodology Or Assumption

  • 2.1. Research Process of the Radiation Shielding Glass Market
  • 2.2. Research Methodology of the Radiation Shielding Glass Market
  • 2.3. Respondent Profile

3.Executive Summary

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.Market Dynamics

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.Pricing Analysis

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.Global Radiation Shielding Glass Market Revenue (USD Bn), 2023-2033F

7.Market Insights By Type

  • 7.1. Lead Glass
  • 7.2. Lead-Free Glass

8.Market Insights By Radiation Type

  • 8.1. X-Ray Shielding
  • 8.2. Gamma Ray Shielding
  • 8.3. Neutron Shielding

9.Market Insights By Application

  • 9.1. Medical
  • 9.2. Industrial
  • 9.3. Nuclear Energy

10.Market Insights By Region

  • 10.1. North America
    • 10.1.1. The US
    • 10.1.2. Canada
    • 10.1.3. Rest of North America
  • 10.2. Europe
    • 10.2.1. Germany
    • 10.2.2. The UK
    • 10.2.3. France
    • 10.2.4. Italy
    • 10.2.5. Spain
    • 10.2.6. Rest of Europe
  • 10.3. Asia-Pacific
    • 10.3.1. China
    • 10.3.2. Japan
    • 10.3.3. India
    • 10.3.4. South Korea
    • 10.3.5. Rest of Asia-Pacific
  • 10.4. Rest of World

11.Value Chain Analysis

  • 11.1. Marginal Analysis
  • 11.2. List of Market Participants

12.Competitive Landscape

  • 12.1 Competition Dashboard
  • 12.2. Competitor Market Positioning Analysis
  • 12.3. Porter Five Forces Analysis

13.Company Profiles

  • 13.1. Corning Incorporated
    • 13.1.1. Company Overview
    • 13.1.2. Key Financials
    • 13.1.3. SWOT Analysis
    • 13.1.4. Product Portfolio
    • 13.1.5. Recent Developments
  • 13.2. SCHOTT AG
  • 13.3. Nippon Electric Glass Co., Ltd.
  • 13.4. RAY-BAR ENGINEERING CORP
  • 13.5. Nuclear Lead Co. Inc.
  • 13.6. Radiation Protection Products, Inc.
  • 13.7. Lead Glass Pro.
  • 13.8. MAVIG GmbH
  • 13.9. Midland Lead
  • 13.10. MarShield Custom Radiation Shielding

14.Acronyms & Assumption

15.Annexure