![]() |
市場調查報告書
商品編碼
1934997
自動化機器學習解決方案市場-全球產業規模、佔有率、趨勢、機會和預測:按產品、部署、自動化類型、公司規模、最終用戶、地區和競爭格局分類,2021-2031年Automated Machine Learning Solution Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Offering, By Deployment, By Automation Type, By Enterprise Size, By End-Users, By Region & Competition, 2021-2031F |
||||||
全球自動機器學習解決方案市場預計將大幅成長。
預計2025年市場規模將達到32.5億美元,到2031年將達到271.9億美元,複合年成長率(CAGR)為42.48%。自動化機器學習(AutoML)解決方案作為綜合軟體平台,能夠自動化整個機器學習生命週期,涵蓋資料科學,它使得編碼技能有限的商業人士也能建構預測模型;此外,在熟練資料科學家嚴重短缺的情況下,最佳化資源配置的需求也日益迫切。根據CompTIA統計,43%的通路公司計劃在2024年銷售人工智慧相關軟體和服務,這標誌著供應方正在發生重大轉變,以滿足企業對易於使用且擴充性的人工智慧工具日益成長的需求。
| 市場概覽 | |
|---|---|
| 預測期 | 2027-2031 |
| 市場規模:2025年 | 32.5億美元 |
| 市場規模:2031年 | 271.9億美元 |
| 複合年成長率:2026-2031年 | 42.48% |
| 成長最快的細分市場 | 製造業 |
| 最大的市場 | 北美洲 |
儘管存在這些積極趨勢,但自動化模型缺乏透明度和可解釋性(即所謂的「黑盒子」問題)仍然是其被市場普遍接受的一大障礙。在金融和醫療保健等高度監管的行業,無法解讀特定模型預測背後的邏輯會帶來合規風險,並削弱相關人員的信任。這種透明度的缺失,加上嚴格的資料隱私法規以及將自主系統整合到現有傳統基礎設施中的難度,持續阻礙著規避風險的企業大規模採用這些解決方案。
熟練的人工智慧專業人才嚴重短缺是推動自動化機器學習解決方案廣泛應用的關鍵因素。隨著企業尋求將人工智慧融入其核心運營,缺乏優秀的資料科學家造成了巨大的瓶頸,因此需要藉助能夠降低技術門檻的平台。這些工具透過自動化特徵選擇和超參數調優等複雜流程,幫助企業彌補人才缺口,並在無需大規模專家團隊的情況下保持競爭優勢。 IBM 於 2025 年 8 月發布的一份關於人工智慧應用挑戰的報告顯示,42% 的受訪者認為「缺乏專業知識」是其所在機構有效擴展人工智慧舉措的主要障礙。
同時,對營運效率的追求和對加速模型開發週期的需求正在推動這些自主系統的應用。在以快速上市為關鍵的商業環境中,自動化解決方案能夠消除重複的手動編碼任務,顯著縮短將原始資料轉化為可執行洞察所需的時間。這種精簡的工作流程使技術團隊能夠專注於更高層次的策略,而非日常維護,從而提高整體生產力並加快部署速度。根據微軟2025年5月發布的《工作趨勢指數年度報告》,90%的人工智慧電力用戶表示人工智慧減輕了他們的工作負擔,這印證了智慧自動化帶來的效率提升。此外,史丹佛大學2025年4月發布的《人工智慧指數報告》顯示,預計到2024年,企業在人工智慧領域的投資將達到2,523億美元,顯示需要進行巨額投資才能體現這些技術的戰略重要性。
「黑箱」問題,即自動化模型缺乏透明度和可解釋性,是全球自動化機器學習解決方案市場的一大阻礙因素。在金融和醫療保健等高度監管的行業,演算法決策的不透明性與課責和可解釋性的需求直接衝突。相關人員必須能夠檢驗模型如何得出預測結果,以滿足嚴格的法律要求。然而,許多自動化機器學習平台的自主性往往掩蓋了這種邏輯。這種決策路徑審核的缺失會削弱風險規避型企業的信任,從而減緩或限制這些工具在關鍵業務中的應用,因為在這些業務中,任何錯誤都可能導致嚴重的聲譽和財務損失。
由於組織普遍缺乏有效治理複雜系統的準備,這種摩擦進一步加劇。 ISACA 的數據顯示,截至 2024 年,只有 15% 的組織制定了正式的人工智慧政策,凸顯了管治的巨大缺口,導致許多公司無法應對與不透明自動化技術相關的合規風險。如果沒有一個健全的框架來確保這些模型的合乎道德且透明地使用,公司將繼續猶豫是否將 AutoML 解決方案整合到其現有的傳統基礎設施中。因此,這種管治的缺失正在減緩高價值產業(這些產業優先考慮的是監管合規而非營運速度)的市場滲透率。
將生成式人工智慧整合到生命週期自動化中,正在重塑全球自動機器學習解決方案市場,將焦點從簡單的超參數調優轉移到全面的程式碼和資料合成。先進的生成模型現在可以自主創建配置腳本、生成合成訓練資料並創建技術文檔,從而成為智慧業務夥伴,而不是被動的工具。這種演變透過處理傳統上需要人工干預的複雜工程任務,加快了開發進度並緩解了技能短缺問題。根據Google雲端於2024年11月發布的《2024 DORA報告》,76%的開發人員表示每天都在使用人工智慧驅動的工具,這反映出自動化功能已被廣泛採用,以簡化核心軟體和模型開發工作流程。
同時,市場正在整合 MLOps 框架,以應對大規模自動化模型生產所帶來的維運挑戰。隨著企業利用 AutoML 以前所未有的速度產生演算法,一個強大的持續維運管理系統對於在動態生產環境中有效監控、管理和重新訓練這些資產至關重要。這一趨勢凸顯了從模型創建到永續生命週期管理的轉變,確保部署的解決方案數量不會超出現有基礎設施的承受能力。根據 Databricks 2024 年 6 月發布的《數據與人工智慧現狀報告》,企業管理的機器學習模型數量同比成長 11 倍,這凸顯了構建可擴展運維架構以支援自動化模型部署爆炸式成長的迫切需求。
The Global Automated Machine Learning Solution Market is projected to experience substantial expansion, rising from a valuation of USD 3.25 Billion in 2025 to USD 27.19 Billion by 2031, achieving a CAGR of 42.48%. Automated Machine Learning (AutoML) solutions function as comprehensive software platforms that automate the entire machine learning lifecycle, handling tasks ranging from data preprocessing and feature engineering to model selection and hyperparameter tuning. This market growth is largely fueled by the democratization of data science, which enables business professionals with limited coding skills to build predictive models, and by the urgent necessity to optimize resources amidst a critical shortage of skilled data scientists. According to CompTIA, 43% of channel companies intended to sell AI-related software and services in 2024, indicating a major supply-side shift to satisfy the growing organizational demand for accessible and scalable artificial intelligence tools.
| Market Overview | |
|---|---|
| Forecast Period | 2027-2031 |
| Market Size 2025 | USD 3.25 Billion |
| Market Size 2031 | USD 27.19 Billion |
| CAGR 2026-2031 | 42.48% |
| Fastest Growing Segment | Manufacturing |
| Largest Market | North America |
Despite this positive trajectory, a significant barrier to universal market adoption is the lack of transparency and explainability in automated models, commonly known as the "black box" problem. In highly regulated industries like finance and healthcare, the inability to interpret the logic behind specific model predictions creates compliance risks and undermines stakeholder confidence. This opacity, coupled with strict data privacy mandates and the difficulty of integrating autonomous systems into existing legacy infrastructures, continues to cause friction for risk-averse enterprises that are hesitant to deploy these solutions at scale.
Market Driver
The severe shortage of skilled AI professionals acts as a primary catalyst for the widespread adoption of automated machine learning solutions. As organizations aim to embed artificial intelligence into their core operations, the scarcity of qualified data scientists creates a significant bottleneck that necessitates the use of platforms capable of lowering technical barriers. By automating complex processes such as feature selection and hyperparameter tuning, these tools enable enterprises to bridge the talent gap and maintain their competitive edge without requiring large teams of specialized experts. According to IBM's August 2025 report on AI adoption challenges, 42% of respondents identified inadequate expertise as a major obstacle preventing organizations from effectively scaling their artificial intelligence initiatives.
Simultaneously, the drive for operational efficiency and accelerated model development cycles propels the implementation of these autonomous systems. In a business environment where speed to market is essential, automated solutions drastically reduce the time needed to transform raw data into actionable insights by eliminating repetitive manual coding tasks. This streamlined workflow allows technical teams to focus on high-level strategy rather than routine maintenance, thereby boosting overall productivity and ensuring rapid deployment. Microsoft's May 2025 Work Trend Index Annual Report noted that 90% of AI power users find that using AI makes their workload more manageable, underscoring the efficiency gains achieved through intelligent automation. Furthermore, the strategic importance of these technologies is evidenced by substantial financial backing; Stanford HAI's April 2025 AI Index Report indicated that corporate AI investment reached $252.3 billion in 2024.
Market Challenge
The "black box" problem, characterized by a lack of transparency and explainability in automated models, serves as a significant restraint on the Global Automated Machine Learning Solution Market. In highly regulated sectors such as finance and healthcare, the opacity of algorithmic decision-making conflicts directly with the need for accountability and interpretability. Stakeholders must be able to validate how a model derives its predictions to satisfy stringent legal mandates, yet the autonomous nature of many AutoML platforms often obscures this logic. This inability to audit decision pathways erodes trust among risk-averse enterprises, causing them to delay or limit the deployment of these tools in mission-critical operations where errors could lead to severe reputational and financial damage.
This friction is exacerbated by a widespread lack of organizational readiness to effectively govern these complex systems. According to ISACA, only 15% of organizations had established formal AI policies in 2024, highlighting a critical governance gap that leaves many businesses unprepared to manage the compliance risks associated with opaque automated technologies. Without robust frameworks to ensure the ethical and transparent use of these models, enterprises remain hesitant to integrate AutoML solutions into established legacy infrastructures. Consequently, this deficiency in governance slows market penetration in high-value industries that prioritize regulatory adherence over operational speed.
Market Trends
The integration of Generative AI for lifecycle automation is redefining the Global Automated Machine Learning Solution Market by shifting the focus from simple hyperparameter tuning to comprehensive code and data synthesis. Advanced generative models are now capable of autonomously authoring deployment scripts, generating synthetic training data, and creating technical documentation, acting as intelligent operational partners rather than passive tools. This evolution accelerates development timelines and mitigates the skills shortage by handling complex engineering tasks that previously required manual intervention. According to the Google Cloud 2024 DORA Report published in November 2024, 76% of developers reported using AI-powered tools daily, reflecting the pervasive adoption of these automated capabilities to streamline core software and model development workflows.
Concurrently, the market is merging with MLOps frameworks to address the operational challenges created by the mass production of automated models. As organizations leverage AutoML to generate algorithms at an unprecedented pace, robust continuous management systems are becoming essential to monitor, govern, and retrain these assets effectively in dynamic production environments. This trend emphasizes the shift from model creation to sustainable lifecycle management, ensuring that the volume of deployed solutions does not overwhelm legacy infrastructure. According to Databricks' June 2024 State of Data + AI Report, the number of machine learning models managed by organizations grew by 11 times year-over-year, highlighting the critical need for scalable operational architectures to support this explosive growth in automated model deployment.
Report Scope
In this report, the Global Automated Machine Learning Solution Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Automated Machine Learning Solution Market.
Global Automated Machine Learning Solution Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report: