封面
市場調查報告書
商品編碼
1914563

奈米孔定序市場 - 全球產業規模、佔有率、趨勢、機會及預測(按產品類型、序列類型、奈米孔類型、應用、最終用戶、地區和競爭格局分類),2021-2031年

Nanopore Sequencing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product, By Nucleotide Sequenced, By Type, By Type of Nanopore, By Application, By End User, By Region & Competition, 2021-2031F

出版日期: | 出版商: TechSci Research | 英文 181 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

全球奈米孔定序市場預計將從2025年的4.3174億美元成長到2031年的7.9066億美元,複合年成長率(CAGR)為10.61%。該技術透過監測核酸穿過固體或蛋白質中的奈米孔時產生的電流波動來確定核苷酸序列。市場成長的主要驅動力是:對用於解析複雜結構變異的長讀長定定序的需求不斷成長,以及對分散式環境中攜帶式病原體監測的需求日益成長。世界衛生組織(WHO)在2024年報告稱,國際病原體監測網路已向計劃提供了約200萬美元的津貼凸顯了此類診斷基礎設施的重要性。

市場概覽
預測期 2027-2031
市場規模:2025年 4.3174億美元
市場規模:2031年 7.9066億美元
複合年成長率:2026-2031年 10.61%
成長最快的細分市場 消耗品
最大的市場 北美洲

儘管有這些促進因素,但市場普及的一大障礙在於,校正原始資料讀取錯誤率所需的資料分析十分複雜,而原始資料讀取錯誤率仍然高於傳統的短讀長定序系統。這項技術限制需要強大的運算能力才能進行準確解讀,這為缺乏先進生物資訊基礎設施的小規模實驗室設置了很高的進入門檻。因此,數據處理資源密集的特性繼續阻礙這項技術在技術資源有限的機構中的廣泛應用。

市場促進因素

臨床診斷和精準醫療領域應用的不斷拓展,正成為全球奈米定序市場的主要成長動力。隨著技術的進步,奈米孔定序正從研究環境走向受監管的醫療機構,用於快速病原體鑑定和人類基因分析。醫院對奈米孔測序檢測方法的日益普及,充分體現了這一轉變,因為與傳統方法相比,奈米孔測序能夠提供更快的檢測結果。根據FirstWord HealthTech發布的牛津奈米孔公司2025年9月中期財務報告,其臨床收入年增52.9%,顯示這些診斷工具在實際醫療環境中正迅速獲得商業性認可。

此外,降低的資本門檻和經濟高效的擴充性正在推動成長,使高通量基因組數據的獲取更加普及。這個可擴展平台使機構能夠進行大規模人群研究和複雜的基因組組裝,而無需承擔與傳統系統相關的高昂基礎設施成本。這種高效性推動了硬體的普及。 2025年3月,《金融時報》報道稱,由於利用率的提高,高容量Promecion產品線的收入成長了55.8%。這種運作上的擴充性建立在堅實的科學基礎上。 IP Group在2025年報告稱,前一年已發表了約3000篇使用該技術的同行評審論文,證實了其廣泛的適用性。

市場挑戰

全球奈米孔定序市場受到複雜數據分析的極大限制,而分析阻礙因素數據分析對於降低原始數據高錯誤率至關重要。奈米孔平台會產生複雜的電訊號,需要大規模的計算處理和專門的生物資訊工作流程來確保準確性。這些技術要求給用戶帶來了沉重的基礎設施負擔,實際上將缺乏資金或處理能力來應對如此繁重工作量的小規模研究機構和分散式診斷中心排除在外。

這種計算瓶頸對資源匱乏環境下的潛在使用者構成了重大進入障礙。管理複雜的生物數據是整個產業公認的難題。根據皮斯托亞聯盟 (Pistoia Alliance) 2024 年的一項調查,54% 的生命科學專業人士認為非結構化資料是有效利用實驗結果的主要障礙。這項統計數據凸顯了實驗室在處理原始和非標準化資料流(例如來自奈米孔設備的資料)時面臨的操作難題。因此,缺乏先進資訊科學支援的機構不願採用這些平台,從而延緩了該技術在常規臨床和監測應用中的整合,而這些應用對簡單性和速度要求極高。

市場趨勢

人工智慧 (AI) 的整合應用於即時數據分析,正從根本上重塑全球奈米孔定序市場,其關鍵瓶頸在於數據複雜性。先進的機器學習演算法被整合到定序工作流程中,加速鹼基鑑定和突變檢測,有效抑制了以往阻礙該技術發展的高原始數據錯誤率。這種協同效應使得基因組訊號的即時邊緣解讀成為可能,從而減少了對大規模集中式運算基礎設施的需求。英偉達在運算能力方面的投資也反映了這項變革的規模。 Sahm Capital 在 2025 年 1 月指出,分析師預測,到 2026 年,醫療保健產業將為英偉達帶來 10 億美元的年度經常性收入,這主要得益於對人工智慧驅動的基因組分析和藥物發現平台的需求。

同時,市場正日益融合多元體學和蛋白​​質組學研究,從DNA分析擴展到全面的生物學分析。這一趨勢推動奈米孔感測技術直接分析RNA分子和蛋白質結構,吸引了製藥業在藥物研發和品管方面的濃厚興趣。該平台在商業研究中的日益普及也印證了其向工業應用的轉變。根據牛津奈米孔技術公司2025年9月發布的數據,生物製藥客戶的營收年增18.5%,顯示企業在受監管的治療藥物研發中越來越依賴多組體學奈米孔數據。

目錄

第1章概述

第2章調查方法

第3章執行摘要

第4章:客戶評價

第5章 全球奈米孔定序市場展望

  • 市場規模及預測
    • 按金額
  • 市佔率及預測
    • 依產品分類(消耗品、設備)
    • 依鹼基序列(DNA、RNA)
    • 按類型(直流定序、合成DNA和側向隧道電流定序、光學讀取技術定序、核酸外切定序)
    • 奈米孔類型(固體、生物、混合)
    • 依應用領域(人類遺傳學、臨床研究、植物研究、微生物學、動物研究)
    • 依最終用戶(生技公司、臨床檢查室、學術和研究機構)分類
    • 按地區
    • 按公司(2025 年)
  • 市場地圖

6. 北美奈米孔定序市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 北美洲:國家分析
    • 美國
    • 加拿大
    • 墨西哥

7. 歐洲奈米孔定序市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 歐洲:國家分析
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙

8. 亞太地區奈米孔定序市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

9. 中東與非洲奈米孔定序市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 中東和非洲:國家分析
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非

10. 南美洲奈米孔定序市場展望

  • 市場規模及預測
  • 市佔率及預測
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷

第11章 市場動態

  • 促進要素
  • 任務

第12章 市場趨勢與發展

  • 併購
  • 產品發布
  • 最新進展

第13章 全球奈米孔定序市場:SWOT分析

第14章:波特五力分析

  • 產業競爭
  • 新進入者的可能性
  • 供應商電力
  • 顧客權力
  • 替代品的威脅

第15章 競爭格局

  • Oxford Nanopore Technologies plc
  • Illumina, Inc
  • Agilent Technologies, Inc
  • Roche Sequencing Solutions, Inc.
  • 10X Genomics Inc
  • Nabsys, Inc
  • Laboratory Corporation of America Holdings
  • Quantapore Inc
  • INanoBio Inc
  • Electronic BioSciences, Inc.

第16章 策略建議

第17章:關於研究公司及免責聲明

簡介目錄
Product Code: 7677

The Global Nanopore Sequencing Market is projected to expand from USD 431.74 Million in 2025 to USD 790.66 Million by 2031, registering a CAGR of 10.61%. This technology determines nucleotide sequences by monitoring fluctuations in electrical current as nucleic acids pass through a solid-state or protein nanopore. The market's growth is largely fueled by the increasing need for long-read sequencing to decipher complex structural variants and the rising demand for portable, real-time pathogen monitoring in decentralized environments. Underscoring the importance of these diagnostic infrastructures, the World Health Organization reported in 2024 that the International Pathogen Surveillance Network provided nearly two million US dollars in grants to projects aimed at boosting global genomic analysis capabilities.

Market Overview
Forecast Period2027-2031
Market Size 2025USD 431.74 Million
Market Size 2031USD 790.66 Million
CAGR 2026-203110.61%
Fastest Growing SegmentConsumables
Largest MarketNorth America

Despite these drivers, a major obstacle hindering broader market adoption is the complexity of data analysis required to correct raw read error rates, which remain higher than those of conventional short-read systems. This technical limitation demands significant computational power for accurate interpretation, establishing a high barrier to entry for smaller laboratories that lack sophisticated bioinformatics infrastructure. Consequently, the resource-intensive nature of data processing continues to challenge the technology's expansion into facilities with limited technical resources.

Market Driver

The expansion of applications within clinical diagnostics and precision medicine acts as a primary growth engine for the Global Nanopore Sequencing Market. As the technology evolves, it is transitioning from research settings to regulated healthcare environments, where it is used for rapid pathogen identification and human genetic profiling. This shift is highlighted by the increased deployment of nanopore-based tests in hospitals, offering faster results compared to traditional methods. According to FirstWord HealthTech, in its September 2025 report on Oxford Nanopore's interim results, revenue in the Clinical segment rose by 52.9% year-over-year, demonstrating the swift commercial acceptance of these diagnostic tools in practical medical scenarios.

Furthermore, reduced capital barriers and cost-effective scalability are driving growth by democratizing access to high-throughput genomic data. Scalable platforms allow institutions to conduct extensive population studies and complex genome assemblies without the high infrastructure costs associated with legacy systems. This efficiency has spurred hardware adoption; the Financial Times noted in March 2025 that revenue from the high-capacity PromethION product range increased by 55.8% as utilization rates climbed. This operational scalability is backed by a strong scientific foundation, with IP Group reporting in 2025 that approximately 3,000 peer-reviewed papers utilizing this technology were published the previous year, confirming its wide-ranging applicability.

Market Challenge

The Global Nanopore Sequencing Market faces a significant restraint due to the intricate data analysis required to mitigate high raw read error rates. Nanopore platforms produce complex electrical signals that necessitate extensive computational processing and specialized bioinformatics workflows to ensure accuracy. This technical requirement places a heavy infrastructure burden on users, effectively excluding smaller research facilities and decentralized diagnostic centers that lack the financial means or processing capabilities to manage such demanding workloads.

This computational bottleneck creates a critical barrier to entry for potential users in resource-limited settings. The challenge of managing complex biological data is a recognized issue across the industry; according to the Pistoia Alliance in 2024, 54% of life science experts identified unstructured data as a major obstacle to effectively using experimental outputs. This statistic emphasizes the operational difficulties laboratories face when dealing with raw, non-standardized data streams like those from nanopore devices. Consequently, organizations without advanced informatics support are deterred from adopting these platforms, slowing the technology's integration into routine clinical and surveillance applications where simplicity and speed are essential.

Market Trends

The integration of Artificial Intelligence for real-time data analytics is fundamentally reshaping the Global Nanopore Sequencing Market by resolving the critical bottleneck of data complexity. Advanced machine learning algorithms are being embedded into sequencing workflows to accelerate basecalling and variant detection, effectively counteracting the high raw read error rates that historically challenged the technology. This synergy enables immediate, edge-based interpretation of genomic signals, reducing the need for massive centralized computing infrastructure. The scale of this shift is reflected in the investment in computing power; Sahm Capital noted in January 2025 that analysts expect the healthcare sector to contribute one billion US dollars in annual recurring revenue to Nvidia by 2026, driven largely by the demand for AI-driven genomic and drug discovery platforms.

Simultaneously, the market is witnessing a convergence with multi-omics and proteomics research, expanding beyond DNA analysis to comprehensive biological profiling. This trend involves broadening nanopore sensing capabilities to directly analyze RNA molecules and protein structures, attracting significant interest from the pharmaceutical sector for drug development and quality control. This move toward industrial application is evidenced by the rising adoption of these platforms in commercial research; according to Oxford Nanopore Technologies in September 2025, revenue from the BioPharma customer segment grew by 18.5% year-over-year, highlighting the increasing reliance on multi-omic nanopore data for regulated therapeutic development.

Key Market Players

  • Oxford Nanopore Technologies plc
  • Illumina, Inc
  • Agilent Technologies, Inc
  • Roche Sequencing Solutions, Inc.
  • 10X Genomics Inc
  • Nabsys, Inc
  • Laboratory Corporation of America Holdings
  • Quantapore Inc
  • INanoBio Inc
  • Electronic BioSciences, Inc.

Report Scope

In this report, the Global Nanopore Sequencing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Nanopore Sequencing Market, By Product

  • Consumables
  • Instruments

Nanopore Sequencing Market, By Nucleotide Sequenced

  • DNA
  • RNA

Nanopore Sequencing Market, By Type

  • Direct Current Sequencing
  • Synthetic DNA and Horizontal Tunnelling Current Sequencing
  • Optical Reading Techniques Sequencing
  • Exonuclease Sequencing

Nanopore Sequencing Market, By Type of Nanopore

  • Solid State
  • Biological
  • Hybrid

Nanopore Sequencing Market, By Application

  • Human Genetics
  • Clinical Research
  • Plant Research
  • Microbiology
  • Animal Research

Nanopore Sequencing Market, By End User

  • Biotechnology Companies
  • Clinical Laboratories
  • Academic & Research Institutes

Nanopore Sequencing Market, By Region

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Nanopore Sequencing Market.

Available Customizations:

Global Nanopore Sequencing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Nanopore Sequencing Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Consumables, Instruments)
    • 5.2.2. By Nucleotide Sequenced (DNA, RNA)
    • 5.2.3. By Type (Direct Current Sequencing, Synthetic DNA and Horizontal Tunnelling Current Sequencing, Optical Reading Techniques Sequencing, Exonuclease Sequencing)
    • 5.2.4. By Type of Nanopore (Solid State, Biological, Hybrid)
    • 5.2.5. By Application (Human Genetics, Clinical Research, Plant Research, Microbiology, Animal Research)
    • 5.2.6. By End User (Biotechnology Companies, Clinical Laboratories, Academic & Research Institutes)
    • 5.2.7. By Region
    • 5.2.8. By Company (2025)
  • 5.3. Market Map

6. North America Nanopore Sequencing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By Nucleotide Sequenced
    • 6.2.3. By Type
    • 6.2.4. By Type of Nanopore
    • 6.2.5. By Application
    • 6.2.6. By End User
    • 6.2.7. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Nanopore Sequencing Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By Nucleotide Sequenced
        • 6.3.1.2.3. By Type
        • 6.3.1.2.4. By Type of Nanopore
        • 6.3.1.2.5. By Application
        • 6.3.1.2.6. By End User
    • 6.3.2. Canada Nanopore Sequencing Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By Nucleotide Sequenced
        • 6.3.2.2.3. By Type
        • 6.3.2.2.4. By Type of Nanopore
        • 6.3.2.2.5. By Application
        • 6.3.2.2.6. By End User
    • 6.3.3. Mexico Nanopore Sequencing Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By Nucleotide Sequenced
        • 6.3.3.2.3. By Type
        • 6.3.3.2.4. By Type of Nanopore
        • 6.3.3.2.5. By Application
        • 6.3.3.2.6. By End User

7. Europe Nanopore Sequencing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By Nucleotide Sequenced
    • 7.2.3. By Type
    • 7.2.4. By Type of Nanopore
    • 7.2.5. By Application
    • 7.2.6. By End User
    • 7.2.7. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Nanopore Sequencing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By Nucleotide Sequenced
        • 7.3.1.2.3. By Type
        • 7.3.1.2.4. By Type of Nanopore
        • 7.3.1.2.5. By Application
        • 7.3.1.2.6. By End User
    • 7.3.2. France Nanopore Sequencing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By Nucleotide Sequenced
        • 7.3.2.2.3. By Type
        • 7.3.2.2.4. By Type of Nanopore
        • 7.3.2.2.5. By Application
        • 7.3.2.2.6. By End User
    • 7.3.3. United Kingdom Nanopore Sequencing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By Nucleotide Sequenced
        • 7.3.3.2.3. By Type
        • 7.3.3.2.4. By Type of Nanopore
        • 7.3.3.2.5. By Application
        • 7.3.3.2.6. By End User
    • 7.3.4. Italy Nanopore Sequencing Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product
        • 7.3.4.2.2. By Nucleotide Sequenced
        • 7.3.4.2.3. By Type
        • 7.3.4.2.4. By Type of Nanopore
        • 7.3.4.2.5. By Application
        • 7.3.4.2.6. By End User
    • 7.3.5. Spain Nanopore Sequencing Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product
        • 7.3.5.2.2. By Nucleotide Sequenced
        • 7.3.5.2.3. By Type
        • 7.3.5.2.4. By Type of Nanopore
        • 7.3.5.2.5. By Application
        • 7.3.5.2.6. By End User

8. Asia Pacific Nanopore Sequencing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By Nucleotide Sequenced
    • 8.2.3. By Type
    • 8.2.4. By Type of Nanopore
    • 8.2.5. By Application
    • 8.2.6. By End User
    • 8.2.7. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Nanopore Sequencing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By Nucleotide Sequenced
        • 8.3.1.2.3. By Type
        • 8.3.1.2.4. By Type of Nanopore
        • 8.3.1.2.5. By Application
        • 8.3.1.2.6. By End User
    • 8.3.2. India Nanopore Sequencing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By Nucleotide Sequenced
        • 8.3.2.2.3. By Type
        • 8.3.2.2.4. By Type of Nanopore
        • 8.3.2.2.5. By Application
        • 8.3.2.2.6. By End User
    • 8.3.3. Japan Nanopore Sequencing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By Nucleotide Sequenced
        • 8.3.3.2.3. By Type
        • 8.3.3.2.4. By Type of Nanopore
        • 8.3.3.2.5. By Application
        • 8.3.3.2.6. By End User
    • 8.3.4. South Korea Nanopore Sequencing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Product
        • 8.3.4.2.2. By Nucleotide Sequenced
        • 8.3.4.2.3. By Type
        • 8.3.4.2.4. By Type of Nanopore
        • 8.3.4.2.5. By Application
        • 8.3.4.2.6. By End User
    • 8.3.5. Australia Nanopore Sequencing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Product
        • 8.3.5.2.2. By Nucleotide Sequenced
        • 8.3.5.2.3. By Type
        • 8.3.5.2.4. By Type of Nanopore
        • 8.3.5.2.5. By Application
        • 8.3.5.2.6. By End User

9. Middle East & Africa Nanopore Sequencing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By Nucleotide Sequenced
    • 9.2.3. By Type
    • 9.2.4. By Type of Nanopore
    • 9.2.5. By Application
    • 9.2.6. By End User
    • 9.2.7. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Nanopore Sequencing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By Nucleotide Sequenced
        • 9.3.1.2.3. By Type
        • 9.3.1.2.4. By Type of Nanopore
        • 9.3.1.2.5. By Application
        • 9.3.1.2.6. By End User
    • 9.3.2. UAE Nanopore Sequencing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By Nucleotide Sequenced
        • 9.3.2.2.3. By Type
        • 9.3.2.2.4. By Type of Nanopore
        • 9.3.2.2.5. By Application
        • 9.3.2.2.6. By End User
    • 9.3.3. South Africa Nanopore Sequencing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By Nucleotide Sequenced
        • 9.3.3.2.3. By Type
        • 9.3.3.2.4. By Type of Nanopore
        • 9.3.3.2.5. By Application
        • 9.3.3.2.6. By End User

10. South America Nanopore Sequencing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product
    • 10.2.2. By Nucleotide Sequenced
    • 10.2.3. By Type
    • 10.2.4. By Type of Nanopore
    • 10.2.5. By Application
    • 10.2.6. By End User
    • 10.2.7. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Nanopore Sequencing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product
        • 10.3.1.2.2. By Nucleotide Sequenced
        • 10.3.1.2.3. By Type
        • 10.3.1.2.4. By Type of Nanopore
        • 10.3.1.2.5. By Application
        • 10.3.1.2.6. By End User
    • 10.3.2. Colombia Nanopore Sequencing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product
        • 10.3.2.2.2. By Nucleotide Sequenced
        • 10.3.2.2.3. By Type
        • 10.3.2.2.4. By Type of Nanopore
        • 10.3.2.2.5. By Application
        • 10.3.2.2.6. By End User
    • 10.3.3. Argentina Nanopore Sequencing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product
        • 10.3.3.2.2. By Nucleotide Sequenced
        • 10.3.3.2.3. By Type
        • 10.3.3.2.4. By Type of Nanopore
        • 10.3.3.2.5. By Application
        • 10.3.3.2.6. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Global Nanopore Sequencing Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. Oxford Nanopore Technologies plc
    • 15.1.1. Business Overview
    • 15.1.2. Products & Services
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel
    • 15.1.5. SWOT Analysis
  • 15.2. Illumina, Inc
  • 15.3. Agilent Technologies, Inc
  • 15.4. Roche Sequencing Solutions, Inc.
  • 15.5. 10X Genomics Inc
  • 15.6. Nabsys, Inc
  • 15.7. Laboratory Corporation of America Holdings
  • 15.8. Quantapore Inc
  • 15.9. INanoBio Inc
  • 15.10. Electronic BioSciences, Inc.

16. Strategic Recommendations

17. About Us & Disclaimer