封面
市場調查報告書
商品編碼
1785365

真空計市場-全球產業規模、佔有率、趨勢、機會和預測(細分、按類型、按應用、按地區、按競爭,2020-2030 年)

Vacuum Gauge Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Type, By Application, By Region, By Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024年,全球真空計市場規模為10.6億美元,預計到2030年將達到15.5億美元,複合年成長率為6.39%。真空計市場涵蓋精密儀器的開發、製造和部署,這些儀器旨在測量和監測各種工業、科學和商業應用中的真空壓力水平。真空計是用於檢測和量化低壓環境的關鍵組件,能夠控制和最佳化需要真空條件的製程。這些儀器的技術各不相同,包括機械式、熱式、電離式、電容式和壓電式真空計,每種都適用於不同的真空範圍和操作要求。

市場概覽
預測期 2026-2030
2024年市場規模 10.6億美元
2030年市場規模 15.5億美元
2025-2030 年複合年成長率 6.39%
成長最快的領域 模擬類型
最大的市場 北美洲

該市場服務於半導體製造、製藥、航太、汽車、化學加工和研究實驗室等眾多終端用戶產業,在這些產業中,維持精確的真空度對於產品品質、安全和製程效率至關重要。真空計技術的進步提高了精度,增強了數位介面、即時資料監控以及與自動化系統的整合,從而有助於實現更好的製程控制並減少停機時間。高科技製造流程的日益普及、對節能緊湊型設備的需求不斷成長,以及再生能源和生物技術等新興領域的應用不斷拓展,都促進了市場的成長。

關鍵市場促進因素

半導體製造對真空計的需求不斷成長

主要市場挑戰

先進真空計的成本高且複雜

主要市場趨勢

擴大採用與物聯網和自動化系統整合的智慧數位真空計

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球真空計市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 按類型(數位型、類比型)
    • 依應用(電力工業、石油化學工業、冶金工業、測量、軍事機械、實驗室、交通運輸、其他)
    • 按地區
  • 按公司分類(2024)
  • 市場地圖

第6章:北美真空計市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲真空計市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙

第8章:亞太真空計市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第9章:南美洲真空計市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東與非洲真空計市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 中東和非洲:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 科威特
    • 土耳其

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 合併與收購(如有)
  • 產品發布(如有)
  • 最新動態

第13章:公司簡介

  • Agilent Technologies, Inc.
  • MKS Instruments, Inc.
  • Pfeiffer Vacuum Technology AG
  • Inficon Holding AG
  • Edwards Vacuum, LLC
  • Kurt J. Lesker Company
  • Brooks Instrument (Fortive Corporation)
  • Leybold GmbH
  • Granville-Phillips (a division of MKS Instruments)
  • Vacuubrand GmbH + Co KG

第 14 章:策略建議

第15章調查會社について,免責事項

簡介目錄
Product Code: 30301

Global Vacuum Gauge Market was valued at USD 1.06 Billion in 2024 and is expected to reach USD 1.55 Billion by 2030 with a CAGR of 6.39%. The Vacuum Gauge Market encompasses the development, manufacturing, and deployment of precision instruments designed to measure and monitor vacuum pressure levels across a wide range of industrial, scientific, and commercial applications. Vacuum gauges are critical components used to detect and quantify low-pressure environments, enabling the control and optimization of processes where vacuum conditions are essential. These instruments vary in technology, including mechanical, thermal, ionization, capacitive, and piezoelectric gauges, each suited for different vacuum ranges and operational requirements.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.06 Billion
Market Size 2030USD 1.55 Billion
CAGR 2025-20306.39%
Fastest Growing SegmentAnalog Type
Largest MarketNorth America

The market serves diverse end-user industries such as semiconductor manufacturing, pharmaceuticals, aerospace, automotive, chemical processing, and research laboratories, where maintaining precise vacuum levels is crucial for product quality, safety, and process efficiency. Advancements in vacuum gauge technology have led to enhanced accuracy, digital interfacing, real-time data monitoring, and integration with automation systems, facilitating better process control and reduced downtime. The growing adoption of high-tech manufacturing processes, increasing demand for energy-efficient and compact devices, and expanding applications in emerging sectors such as renewable energy and biotechnology contribute to market growth.

Key Market Drivers

Growing Demand for Vacuum Gauges in Semiconductor Manufacturing

The semiconductor manufacturing industry represents one of the most significant drivers for the vacuum gauge market, as the production of semiconductor devices requires extremely precise vacuum environments during fabrication processes. Semiconductor fabrication involves multiple stages, including etching, deposition, ion implantation, and chemical vapor deposition, all of which operate under controlled vacuum conditions to ensure product quality and performance. Accurate vacuum measurement and monitoring are critical to maintaining process stability and preventing contamination.

The rapid global expansion of semiconductor manufacturing capacity, fueled by increasing demand for consumer electronics, automotive electronics, and data center infrastructure, is driving the adoption of advanced vacuum gauges capable of delivering high precision, reliability, and real-time data. Moreover, as chip designs become more complex with smaller geometries and tighter tolerances, the need for sophisticated vacuum sensing technologies intensifies. The evolution of semiconductor fabrication technologies, such as extreme ultraviolet lithography (EUV) and advanced packaging, further demands improved vacuum control and measurement, bolstering the market for innovative vacuum gauge solutions.

In addition, government initiatives in various regions aimed at enhancing domestic semiconductor production capacities, along with rising investments in research and development, create a favorable environment for vacuum gauge manufacturers to expand their presence. Consequently, semiconductor fabs are increasingly integrating automated and smart vacuum monitoring systems into their production lines, driving demand for digital, compact, and highly sensitive vacuum gauges. This market driver is expected to sustain strong growth momentum due to ongoing advancements in semiconductor technologies and increasing global reliance on microelectronics. Global semiconductor manufacturing is projected to exceed $600 billion in value, driving demand for precision vacuum equipment. Vacuum gauge adoption in semiconductor fabs is expected to grow by over 8% CAGR due to increased cleanroom requirements. More than 70% of semiconductor production relies on vacuum-based processes such as deposition, etching, and ion implantation. Advanced nodes below 5nm require ultra-high vacuum conditions, accelerating investment in high-sensitivity vacuum gauges. Asia Pacific accounts for over 60% of global semiconductor fabrication, fueling regional demand for vacuum instrumentation. Global vacuum gauge market is estimated to cross $1 billion in revenue, with semiconductors as a primary end-use sector.

Key Market Challenges

High Cost and Complexity of Advanced Vacuum Gauges

One of the significant challenges faced by the vacuum gauge market is the high cost and inherent complexity associated with advanced vacuum measurement technologies. Precision vacuum gauges, such as ionization gauges, capacitance manometers, and quadrupole mass spectrometers, require sophisticated manufacturing processes and high-quality materials, which significantly drive up their production costs. This makes the equipment less accessible to small and medium-sized enterprises (SMEs), especially in developing regions, limiting market penetration and adoption.

Furthermore, advanced vacuum gauges often demand specialized installation, calibration, and maintenance services that require skilled technicians and ongoing support, adding to the total cost of ownership. The integration of vacuum gauges into automated systems and IoT-enabled smart factories further increases technical complexity, requiring interoperability with diverse control systems and data analytics platforms. This complexity poses barriers to adoption, as industries must invest in employee training and process adaptation to fully leverage the benefits of modern vacuum measurement solutions. Moreover, the sensitive nature of these devices makes them susceptible to damage from environmental contaminants, temperature fluctuations, and mechanical shocks, leading to potential downtime and costly repairs.

Manufacturers and end-users alike face challenges in balancing performance, durability, and affordability, which can slow down procurement cycles and reduce replacement rates. Additionally, the rapid pace of technological advancements demands continuous research and development investments to keep products competitive, pushing smaller manufacturers out of the market and reducing the diversity of available solutions. As industries such as semiconductor fabrication, pharmaceuticals, and aerospace increasingly rely on ultra-high vacuum environments, the demand for precise yet cost-effective gauges intensifies, exacerbating the challenge of delivering advanced technology at scale. This cost and complexity challenge not only restricts market expansion in emerging economies but also pressures existing suppliers to innovate on cost reduction without compromising measurement accuracy or reliability.

Key Market Trends

Increasing Adoption of Smart and Digital Vacuum Gauges Integrated with IoT and Automation Systems

The Vacuum Gauge Market is witnessing a significant shift towards smart, digital gauges equipped with advanced sensing technologies and seamless integration capabilities with IoT and automation platforms. Traditional analog vacuum gauges are gradually being replaced by digital variants that offer enhanced precision, remote monitoring, and real-time data analytics. These smart vacuum gauges are becoming integral components in automated industrial processes, semiconductor manufacturing, and scientific research where precise vacuum measurement is critical. The integration of IoT connectivity allows users to monitor vacuum levels remotely, enabling predictive maintenance, reducing downtime, and improving overall operational efficiency.

Additionally, the ability to interface with centralized control systems ensures better data aggregation, analysis, and process optimization. This trend is supported by advancements in sensor miniaturization, wireless communication protocols, and user-friendly interfaces that simplify installation and operation across complex environments. As industries increasingly adopt Industry 4.0 principles, the demand for vacuum gauges that provide accurate, real-time insights while facilitating remote diagnostics and automated control is accelerating.

Key Market Players

  • Agilent Technologies, Inc.
  • MKS Instruments, Inc.
  • Pfeiffer Vacuum Technology AG
  • Inficon Holding AG
  • Edwards Vacuum, LLC
  • Kurt J. Lesker Company
  • Brooks Instrument (Fortive Corporation)
  • Leybold GmbH
  • Granville-Phillips (a division of MKS Instruments)
  • Vacuubrand GmbH + Co KG

Report Scope:

In this report, the Global Vacuum Gauge Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Vacuum Gauge Market, By Type:

  • Digital Type
  • Analog Type

Vacuum Gauge Market, By Application:

  • Power Industry
  • Petrochemical Industry
  • Metallurgical Industry
  • Measurement
  • Military Machinery
  • Laboratory
  • Transportation
  • Others

Vacuum Gauge Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Vacuum Gauge Market.

Available Customizations:

Global Vacuum Gauge Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Vacuum Gauge Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Digital Type, Analog Type)
    • 5.2.2. By Application (Power Industry, Petrochemical Industry, Metallurgical Industry, Measurement, Military Machinery, Laboratory, Transportation, Others)
    • 5.2.3. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Vacuum Gauge Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Vacuum Gauge Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
    • 6.3.2. Canada Vacuum Gauge Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
    • 6.3.3. Mexico Vacuum Gauge Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application

7. Europe Vacuum Gauge Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Vacuum Gauge Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
    • 7.3.2. United Kingdom Vacuum Gauge Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
    • 7.3.3. Italy Vacuum Gauge Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
    • 7.3.4. France Vacuum Gauge Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
    • 7.3.5. Spain Vacuum Gauge Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application

8. Asia-Pacific Vacuum Gauge Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Vacuum Gauge Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
    • 8.3.2. India Vacuum Gauge Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
    • 8.3.3. Japan Vacuum Gauge Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application
    • 8.3.4. South Korea Vacuum Gauge Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Application
    • 8.3.5. Australia Vacuum Gauge Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Application

9. South America Vacuum Gauge Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Vacuum Gauge Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Vacuum Gauge Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Vacuum Gauge Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application

10. Middle East and Africa Vacuum Gauge Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Vacuum Gauge Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
    • 10.3.2. Saudi Arabia Vacuum Gauge Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Vacuum Gauge Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application
    • 10.3.4. Kuwait Vacuum Gauge Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Application
    • 10.3.5. Turkey Vacuum Gauge Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Agilent Technologies, Inc.
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. MKS Instruments, Inc.
  • 13.3. Pfeiffer Vacuum Technology AG
  • 13.4. Inficon Holding AG
  • 13.5. Edwards Vacuum, LLC
  • 13.6. Kurt J. Lesker Company
  • 13.7. Brooks Instrument (Fortive Corporation)
  • 13.8. Leybold GmbH
  • 13.9. Granville-Phillips (a division of MKS Instruments)
  • 13.10. Vacuubrand GmbH + Co KG

14. Strategic Recommendations

15. About Us & Disclaimer