封面
市場調查報告書
商品編碼
1728077

原位雜化市場-全球產業規模、佔有率、趨勢、機會和預測(按產品、技術、應用、最終用戶、地區和競爭細分,2020-2030 年)

In Situ Hybridization Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product, By Technology, By Application, By End User, By Region and Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 182 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球原位雜合技術 (ISH) 市值為 18.8 億美元,預計到 2030 年將達到 29.1 億美元,預測期內複合年成長率為 7.54%。由於 ISH 能夠精確檢測組織樣本中的特定核酸序列,因此越來越被認為是分子診斷和生物醫學研究中的重要工具。對疾病(尤其是腫瘤學和遺傳疾病)的準確和早期檢測的需求正在推動市場成長。 ISH 能夠詳細可視化基因表現模式和突變,使其成為個人化醫療策略的基石。

市場概覽
預測期 2026-2030
2024年市場規模 18.8億美元
2030年市場規模 29.1億美元
2025-2030 年複合年成長率 7.54%
成長最快的領域 細胞遺傳學
最大的市場 北美洲

自動染色平台和高解析度成像等技術創新正在提高 ISH 的可用性和可靠性,促進其在臨床實驗室和研究機構的更廣泛應用。多重檢測和探針設計的改進使得同時檢測多個基因目標成為可能,從而提高了診斷效率和患者預後。隨著精準醫療的不斷進步,ISH 在提供有針對性的治療方案方面的相關性正在不斷擴大,並加強了其在現代診斷和藥物開發中的作用。

關鍵市場促進因素

癌症和遺傳疾病發生率上升

主要市場挑戰

ISH技術和試劑成本高昂

主要市場趨勢

與個人化醫療的整合

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球原位雜合技術市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 按產品(儀器、耗材及配件、軟體、服務)
    • 依技術分類(螢光原位雜合技術、顯色原位雜合技術)
    • 依應用(癌症、細胞遺傳學、傳染病、神經科學、免疫學、其他)
    • 按最終用戶(醫院和診斷實驗室、學術和研究機構、製藥和生物技術公司、合約研究組織等)
    • 按公司分類(2024)
    • 按地區
  • 市場地圖

第6章:北美原位雜合技術市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第7章:歐洲原位雜合技術市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 法國
    • 德國
    • 英國
    • 義大利
    • 西班牙

第8章:亞太原位雜合技術市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 韓國
    • 日本
    • 澳洲

第9章:南美洲原位雜合技術市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東與非洲原位雜合技術市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 合併與收購(如有)
  • 產品發布(如有)
  • 最新動態

第 13 章:波特五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 顧客的力量
  • 替代產品的威脅

第 14 章:競爭格局

  • Thermo Fisher Scientific, Inc.
  • Abbott Laboratories Inc.
  • PerkinElmer, Inc.
  • Bio View Ltd.
  • Agilent Technologies, Inc.
  • Merck KGaA
  • Bio-Rad Laboratories, Inc.
  • Biotechne Corporation
  • F. Hoffmann Roche AG
  • Biocare Medical LLC

第 15 章:策略建議

第16章調查會社について,免責事項

簡介目錄
Product Code: 15520

The Global In Situ Hybridization (ISH) Market was valued at USD 1.88 Billion in 2024 and is projected to reach USD 2.91 Billion by 2030, growing at a CAGR of 7.54% during the forecast period. ISH is increasingly recognized as a vital tool in molecular diagnostics and biomedical research due to its capability to precisely detect specific nucleic acid sequences within tissue samples. The demand for accurate and early detection of diseases, particularly in oncology and genetic disorders, is driving market growth. ISH enables detailed visualization of gene expression patterns and mutations, making it a cornerstone in personalized medicine strategies.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.88 Billion
Market Size 2030USD 2.91 Billion
CAGR 2025-20307.54%
Fastest Growing SegmentCytogenetics
Largest MarketNorth America

Technological innovations such as automated staining platforms and high-resolution imaging are enhancing the usability and reliability of ISH, facilitating broader adoption in clinical laboratories and research institutions. Developments in multiplex assays and improved probe designs are enabling simultaneous detection of multiple genetic targets, improving diagnostic efficiency and patient outcomes. As precision medicine continues to advance, ISH's relevance in delivering targeted treatment options is expanding, strengthening its role in modern diagnostics and drug development.

Key Market Drivers

Rising Incidence of Cancer and Genetic Disorders

The increasing global burden of cancer and genetic diseases is a primary growth driver for the In Situ Hybridization market. According to the World Health Organization, cancer accounted for approximately 20 million new cases and 9.7 million deaths in 2022. Lung, breast, and colorectal cancers were among the most prevalent. These rising figures underscore the need for accurate molecular diagnostic tools that can provide specific and early detection. ISH, particularly Fluorescent In Situ Hybridization (FISH), plays a critical role in identifying genetic abnormalities, gene fusions, and chromosomal rearrangements within tissue samples, aiding in diagnosis, prognosis, and treatment planning.

Key Market Challenges

High Cost of ISH Technology and Reagents

The adoption of ISH techniques faces a significant hurdle due to the high costs associated with equipment and consumables. Advanced instruments such as hybridization systems and imaging platforms require substantial investment, which can be restrictive for smaller laboratories and facilities in developing regions. Additionally, reagents including specialized probes and buffers contribute to the overall expense, making frequent use of ISH less feasible in cost-sensitive healthcare environments. These cost barriers may limit the accessibility of high-precision diagnostics, particularly where budget constraints impact healthcare delivery.

Key Market Trends

Integration with Personalized Medicine

A notable trend shaping the ISH market is its growing integration into personalized medicine. ISH techniques, especially FISH, are being leveraged to detect genetic mutations and biomarkers that inform individualized treatment regimens. This alignment with precision healthcare is particularly prominent in oncology, where ISH supports targeted therapies by identifying specific molecular features of tumors. Companion diagnostics utilizing ISH allow clinicians to tailor treatments based on a patient's genetic profile, enhancing therapeutic efficacy and minimizing adverse effects. This synergy with precision medicine is reinforcing the value of ISH as a diagnostic standard in both clinical and research settings.

Key Market Players

  • Thermo Fisher Scientific, Inc.
  • Abbott Laboratories Inc.
  • PerkinElmer, Inc.
  • Bio View Ltd.
  • Agilent Technologies, Inc.
  • Merck KGaA
  • Bio-Rad Laboratories, Inc.
  • Biotechne Corporation
  • F. Hoffmann Roche AG
  • Biocare Medical LLC

Report Scope:

In this report, the Global In Situ Hybridization Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

In Situ Hybridization Market, By Product:

  • Instruments
  • Consumables & Accessories
  • Software
  • Services

In Situ Hybridization Market, By Technology:

  • Fluorescent In Situ Hybridization
  • Chromogenic In Situ Hybridization

In Situ Hybridization Market, By Application:

  • Cancer
  • Cytogenetics
  • Infectious Diseases
  • Neuroscience
  • Immunology
  • Others

In Situ Hybridization Market, By End User:

  • Hospitals & Diagnostic Laboratories
  • Academic & Research Institutes
  • Pharmaceutical & Biotechnology Companies
  • Contract Research Organizations
  • Others

In Situ Hybridization Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global In Situ Hybridization Market.

Available Customizations:

Global In Situ Hybridization Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global In Situ Hybridization Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Instruments, Consumables & Accessories, Software, Services)
    • 5.2.2. By Technology (Fluorescent In Situ Hybridization, Chromogenic In Situ Hybridization)
    • 5.2.3. By Application (Cancer, Cytogenetics, Infectious Diseases, Neuroscience, Immunology, Others)
    • 5.2.4. By End User (Hospitals & Diagnostic Laboratories, Academic & Research Institutes, Pharmaceutical & Biotechnology Companies, Contract Research Organizations, Others)
    • 5.2.5. By Company (2024)
    • 5.2.6. By Region
  • 5.3. Market Map

6. North America In Situ Hybridization Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By Technology
    • 6.2.3. By Application
    • 6.2.4. By End User
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States In Situ Hybridization Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Application
        • 6.3.1.2.4. By End User
    • 6.3.2. Mexico In Situ Hybridization Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Application
        • 6.3.2.2.4. By End User
    • 6.3.3. Canada In Situ Hybridization Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Application
        • 6.3.3.2.4. By End User

7. Europe In Situ Hybridization Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By Technology
    • 7.2.3. By Application
    • 7.2.4. By End User
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France In Situ Hybridization Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End User
    • 7.3.2. Germany In Situ Hybridization Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End User
    • 7.3.3. United Kingdom In Situ Hybridization Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End User
    • 7.3.4. Italy In Situ Hybridization Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Application
        • 7.3.4.2.4. By End User
    • 7.3.5. Spain In Situ Hybridization Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Application
        • 7.3.5.2.4. By End User

8. Asia-Pacific In Situ Hybridization Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By Technology
    • 8.2.3. By Application
    • 8.2.4. By End User
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China In Situ Hybridization Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End User
    • 8.3.2. India In Situ Hybridization Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End User
    • 8.3.3. South Korea In Situ Hybridization Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End User
    • 8.3.4. Japan In Situ Hybridization Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Product
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End User
    • 8.3.5. Australia In Situ Hybridization Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Product
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End User

9. South America In Situ Hybridization Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By Technology
    • 9.2.3. By Application
    • 9.2.4. By End User
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil In Situ Hybridization Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End User
    • 9.3.2. Argentina In Situ Hybridization Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End User
    • 9.3.3. Colombia In Situ Hybridization Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End User

10. Middle East and Africa In Situ Hybridization Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By End User
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa In Situ Hybridization Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End User
    • 10.3.2. Saudi Arabia In Situ Hybridization Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End User
    • 10.3.3. UAE In Situ Hybridization Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Thermo Fisher Scientific, Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Abbott Laboratories Inc.
  • 14.3. PerkinElmer, Inc.
  • 14.4. Bio View Ltd.
  • 14.5. Agilent Technologies, Inc.
  • 14.6. Merck KGaA
  • 14.7. Bio-Rad Laboratories, Inc.
  • 14.8. Biotechne Corporation
  • 14.9. F. Hoffmann Roche AG
  • 14.10. Biocare Medical LLC

15. Strategic Recommendations

16. About Us & Disclaimer