封面
市場調查報告書
商品編碼
1703290

皮膚毒性測試市場 - 全球產業規模、佔有率、趨勢、機會和預測,按測試類型、按測試方法類型(體內測試和體外測試)、按最終用戶、按地區和競爭細分,2020 年至 2030 年

Dermal Toxicity Testing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Test Type, By Testing Method Type (In Vivo Testing and In Vitro Testing ), By End User, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球皮膚毒性​​測試市場價值為 21 億美元,預計在預測期內將實現令人印象深刻的成長,到 2030 年的複合年成長率為 8.15%。全球皮膚毒性​​測試市場正在穩步成長,這得益於監管要求、對動物試驗的倫理擔憂、技術進步以及研發 (R&D) 投資的增加。該市場對於製藥、化妝品、化學和生物技術行業至關重要,確保產品進入市場前的安全和法規合規性。

市場概覽
預測期 2026-2030
2024年市場規模 21億美元
2030年市場規模 33.7億美元
2025-2030 年複合年成長率 8.15%
成長最快的領域 體外測試
最大的市場 北美洲

FDA(美國)、EMA(歐洲)和OECD等監管機構已經制定了嚴格的皮膚毒性評估安全協議,迫使公司採用先進的測試方法。受監管變化、尖端創新以及消費者對安全、道德和無殘忍產品日益成長的需求的推動,該行業正在經歷重大轉型。

儘管初始成本高和監管標準化等挑戰依然存在,但持續的研發努力、新興經濟體不斷擴大的市場機會以及策略性產業合作正在開闢新的成長途徑。隨著非動物測試方法的日益普及,市場有望繼續擴張,並加強其在塑造全球範圍內藥品、化妝品和化學品安全測試未來方面的關鍵作用。

關鍵市場促進因素

禁止動物試驗的現像日益增多,替代方法的興起

主要市場挑戰

替代方法的驗證

主要市場趨勢

先進的體外模型

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球皮膚毒性​​測試市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 依測試類型(皮膚刺激測試、皮膚致敏測試)
    • 依測試方法類型(體內測試(基於動物的測試)、體外測試(基於細胞或基於組織的測試))
    • 按最終用戶(製藥業、化妝品和個人護理產品行業、化學工業、其他)
    • 按地區
    • 按公司分類(2024)
  • 市場地圖

第6章:北美皮膚毒性測試市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲皮膚毒性測試市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 法國
    • 德國
    • 英國
    • 義大利
    • 西班牙

第8章:亞太皮膚毒性測試市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第9章:南美皮膚毒性測試市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東和非洲皮膚毒性測試市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 近期發展
  • 併購
  • 產品發布

第 13 章:全球皮膚毒性​​測試市場:SWOT 分析

第 14 章:波特五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 顧客的力量
  • 替代產品的威脅

第 15 章:競爭格局

  • SGS SA
  • Covance, Inc
  • Bio-Rad Laboratories Inc.
  • Qiagen NV
  • GE Healthcare
  • Eurofins Scientific Inc
  • Merck KgaA
  • Thermo Fisher Scientific, Inc.
  • Charles River Laboratories International, Inc.
  • Catalent, Inc

第 16 章:策略建議

第17章調查會社について,免責事項

簡介目錄
Product Code: 17199

Global Dermal Toxicity Testing Market was valued at USD 2.10 Billion in 2024 and is anticipated to project impressive growth in the forecast period with a CAGR of 8.15% through 2030. The Global Dermal Toxicity Testing Market is witnessing steady growth, driven by regulatory mandates, ethical concerns over animal testing, technological advancements, and increased investments in research and development (R&D). This market is essential to the pharmaceutical, cosmetic, chemical, and biotechnology industries, ensuring product safety and regulatory compliance before market entry.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 2.10 Billion
Market Size 2030USD 3.37 Billion
CAGR 2025-20308.15%
Fastest Growing SegmentIn Vitro Testing
Largest MarketNorth America

Regulatory bodies such as the FDA (U.S.), EMA (Europe), and OECD have established stringent safety protocols for dermal toxicity assessment, compelling companies to adopt advanced testing methodologies. The industry is undergoing a significant transformation, fueled by regulatory changes, cutting-edge innovations, and growing consumer demand for safe, ethical, and cruelty-free products.

While challenges such as high initial costs and regulatory standardization remain, ongoing R&D efforts, expanding market opportunities in emerging economies, and strategic industry collaborations are unlocking new avenues for growth. With the increasing adoption of non-animal testing methods, the market is poised for continued expansion, reinforcing its critical role in shaping the future of safety testing across pharmaceuticals, cosmetics, and chemicals on a global scale.

Key Market Drivers

Growing Ban on Animal Testing and Shift Toward Alternative Methods

The increasing global restrictions on animal testing have become a significant catalyst for the growth of the Global Dermal Toxicity Testing Market. As ethical concerns, regulatory pressures, and technological advancements converge, industries are rapidly transitioning toward alternative testing methods that are more reliable, cost-effective, and aligned with modern scientific standards. Over the past two decades, several governments and regulatory bodies have implemented strict prohibitions on animal testing, particularly in the cosmetics, pharmaceuticals, and chemical industries. The Cosmetics Regulation (EC) No 1223/2009 introduced: A testing ban: Animal testing on finished cosmetic products has been banned since September 2004, and testing on ingredients has been banned since March 2009. These nations have followed suit with similar bans on animal-tested cosmetics. While the FDA does not outright ban animal testing, states like California, Illinois, and New Jersey have imposed restrictions, leading to increased adoption of alternative testing approaches. Historically a proponent of animal testing, China has relaxed its regulations, now allowing non-animal methods for certain imported and domestically manufactured cosmetics. As regulatory compliance becomes non-negotiable, companies worldwide are investing heavily in alternative toxicity testing solutions, thus fueling market growth.

Key Market Challenges

Validation of Alternative Methods

The validation of alternative methods can pose challenges and potentially hinder the growth of the global dermal toxicity testing market. While alternative methods are sought after due to their ethical considerations and scientific advancements, their validation process can be complex and time-consuming. The validation of alternative methods requires extensive research, data collection, and comparison to established reference methods, often including animal testing benchmarks. This process can be time-consuming and resource-intensive, slowing down the adoption of these methods. As a result, market growth might be hindered, especially in the short term. Regulatory bodies typically require validation data to demonstrate the reliability and predictability of alternative methods. The acceptance of these methods in regulatory frameworks may take time, as agencies need to be convinced of their equivalence to existing methods. This delay can slow down the market growth, as companies hesitate to fully adopt alternative methods until they receive regulatory approval. The validation process aims to establish consistent and reproducible results across different laboratories and testing conditions. Variability in results can arise due to differences in protocols, equipment, or expertise. This lack of consistency can lead to skepticism about the reliability of alternative methods, causing some companies to hesitate in adopting them until these issues are resolved.

Key Market Trends

Advanced In Vitro Models

Advanced in vitro models better replicate human skin physiology, allowing for more accurate predictions of dermal toxicity. These models can mimic skin barrier function, cellular interactions, and complex biological processes, providing more reliable insights into how substances interact with human skin. As accuracy improves, industries can confidently assess potential hazards and make informed decisions about product safety. The use of animals for testing raises ethical concerns, and industries are increasingly turning to non-animal methods. Advanced in vitro models offer an ethical alternative by eliminating the need for animal testing while still providing scientifically meaningful results. Brands that prioritize ethical testing practices can enhance their reputation and appeal to consumers who value cruelty-free products. Regulatory bodies are recognizing the value of advanced in vitro models for safety assessment. As these methods become more validated and established, regulatory acceptance is increasing. Industries can use these methods to fulfill regulatory requirements, which accelerates their adoption and drives market growth. In vitro models offer quicker results compared to animal testing, allowing industries to streamline their testing processes and reduce time-to-market. Additionally, the ability to test multiple substances simultaneously enhances efficiency. While initial setup costs might be involved, the long-term cost-effectiveness of in vitro models can drive their adoption and market growth. Advanced in vitro models can be customized to mimic specific skin types, conditions, and populations. This flexibility enables industries to tailor testing to their products' target audiences, improving the relevance and accuracy of toxicity assessments. This customization can attract industries seeking personalized and precise testing solutions.

Key Market Players

  • SGS S.A.
  • Covance, Inc
  • Bio-Rad Laboratories Inc.
  • Qiagen N.V.
  • GE Healthcare
  • Eurofins Scientific Inc
  • Merck KgaA
  • Thermo Fisher Scientific, Inc.
  • Charles River Laboratories International, Inc.
  • Catalent, Inc.

Report Scope:

In this report, the Global Dermal Toxicity Testing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Dermal Toxicity Testing Market, By Test Type:

  • Skin Irritation Tests
  • Skin Sensitization Tests

Dermal Toxicity Testing Market, By Testing Method Type:

  • In Vivo Testing (Animal-Based Tests)
  • In Vitro Testing (Cell-Based or Tissue-Based Tests)

Dermal Toxicity Testing Market, By End User:

  • Pharmaceuticals industries
  • Cosmetics and personal care products industry
  • Chemical Industry
  • Other

Dermal Toxicity Testing Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Dermal Toxicity Testing Market.

Available Customizations:

Global Dermal Toxicity Testing market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Dermal Toxicity Testing Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Test Type (Skin Irritation Tests, Skin Sensitization Tests)
    • 5.2.2. By Testing Method Type (In Vivo Testing (Animal-Based Tests), In Vitro Testing (Cell-Based or Tissue-Based Tests))
    • 5.2.3. By End User (Pharmaceuticals industries, Cosmetics and personal care products industry, Chemical Industry, Other)
    • 5.2.4. By Region
    • 5.2.5. By Company (2024)
  • 5.3. Market Map

6. North America Dermal Toxicity Testing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Test Type
    • 6.2.2. By Testing Method Type
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Dermal Toxicity Testing Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Test Type
        • 6.3.1.2.2. By Testing Method Type
        • 6.3.1.2.3. By End User
    • 6.3.2. Canada Dermal Toxicity Testing Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Test Type
        • 6.3.2.2.2. By Testing Method Type
        • 6.3.2.2.3. By End User
    • 6.3.3. Mexico Dermal Toxicity Testing Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Test Type
        • 6.3.3.2.2. By Testing Method Type
        • 6.3.3.2.3. By End User

7. Europe Dermal Toxicity Testing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Test Type
    • 7.2.2. By Testing Method Type
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Dermal Toxicity Testing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Test Type
        • 7.3.1.2.2. By Testing Method Type
        • 7.3.1.2.3. By End User
    • 7.3.2. Germany Dermal Toxicity Testing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Test Type
        • 7.3.2.2.2. By Testing Method Type
        • 7.3.2.2.3. By End User
    • 7.3.3. United Kingdom Dermal Toxicity Testing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Test Type
        • 7.3.3.2.2. By Testing Method Type
        • 7.3.3.2.3. By End User
    • 7.3.4. Italy Dermal Toxicity Testing Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Test Type
        • 7.3.4.2.2. By Testing Method Type
        • 7.3.4.2.3. By End User
    • 7.3.5. Spain Dermal Toxicity Testing Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Test Type
        • 7.3.5.2.2. By Testing Method Type
        • 7.3.5.2.3. By End User

8. Asia-Pacific Dermal Toxicity Testing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Test Type
    • 8.2.2. By Testing Method Type
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Dermal Toxicity Testing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Test Type
        • 8.3.1.2.2. By Testing Method Type
        • 8.3.1.2.3. By End User
    • 8.3.2. India Dermal Toxicity Testing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Test Type
        • 8.3.2.2.2. By Testing Method Type
        • 8.3.2.2.3. By End User
    • 8.3.3. Japan Dermal Toxicity Testing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Test Type
        • 8.3.3.2.2. By Testing Method Type
        • 8.3.3.2.3. By End User
    • 8.3.4. South Korea Dermal Toxicity Testing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Test Type
        • 8.3.4.2.2. By Testing Method Type
        • 8.3.4.2.3. By End User
    • 8.3.5. Australia Dermal Toxicity Testing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Test Type
        • 8.3.5.2.2. By Testing Method Type
        • 8.3.5.2.3. By End User

9. South America Dermal Toxicity Testing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Test Type
    • 9.2.2. By Testing Method Type
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Dermal Toxicity Testing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Test Type
        • 9.3.1.2.2. By Testing Method Type
        • 9.3.1.2.3. By End User
    • 9.3.2. Argentina Dermal Toxicity Testing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Test Type
        • 9.3.2.2.2. By Testing Method Type
        • 9.3.2.2.3. By End User
    • 9.3.3. Colombia Dermal Toxicity Testing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Test Type
        • 9.3.3.2.2. By Testing Method Type
        • 9.3.3.2.3. By End User

10. Middle East and Africa Dermal Toxicity Testing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Test Type
    • 10.2.2. By Testing Method Type
    • 10.2.3. By End User
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Dermal Toxicity Testing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Test Type
        • 10.3.1.2.2. By Testing Method Type
        • 10.3.1.2.3. By End User
    • 10.3.2. Saudi Arabia Dermal Toxicity Testing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Test Type
        • 10.3.2.2.2. By Testing Method Type
        • 10.3.2.2.3. By End User
    • 10.3.3. UAE Dermal Toxicity Testing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Test Type
        • 10.3.3.2.2. By Testing Method Type
        • 10.3.3.2.3. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Product Launches

13. Global Dermal Toxicity Testing Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. SGS S.A.
    • 15.1.1. Business Overview
    • 15.1.2. Product & Service Offerings
    • 15.1.3. Recent Developments
    • 15.1.4. Financials (If Listed)
    • 15.1.5. Key Personnel
    • 15.1.6. SWOT Analysis
  • 15.2. Covance, Inc
  • 15.3. Bio-Rad Laboratories Inc.
  • 15.4. Qiagen N.V.
  • 15.5. GE Healthcare
  • 15.6. Eurofins Scientific Inc
  • 15.7. Merck KgaA
  • 15.8. Thermo Fisher Scientific, Inc.
  • 15.9. Charles River Laboratories International, Inc.
  • 15.10. Catalent, Inc

16. Strategic Recommendations

17. About Us & Disclaimer