鋰離子電池隔離膜技術趨勢及市場展望(~2035年)
市場調查報告書
商品編碼
1648931

鋰離子電池隔離膜技術趨勢及市場展望(~2035年)

<2025> Technology Trends and Market Outlook of LIB Separators (~2035)

出版日期: | 出版商: SNE Research | 英文 350 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

鋰離子電池在電動車(EV)、儲能系統(ESS)和消費性電子產品(CE)等各個領域發揮重要作用。因此,持續提升能量密度、壽命和安全性非常重要。為了滿足這些需求,隔膜作為決定電池性能和穩定性的關鍵零件而備受關注。隔膜能夠促進電解液中的離子傳輸,同時防止正負極之間的物理接觸,避免內部短路。雖然隔膜被歸類為惰性成分,但其熱性能、機械性能和電化學性能會顯著影響電池的穩定性、壽命和安全性。

如今,隔膜技術正透過各種材料和製程的開發不斷進步。傳統的聚烯烴基隔膜(PE、PP)因其優異的機械穩定性和耐熱性而廣泛應用。然而,其在高功率和高溫條件下的性能受到限制。為了應對這些挑戰,陶瓷塗層技術和基於不織布的隔膜已被引進,顯著提高了熱穩定性和耐久性。此外,固態電池等下一代電池的出現需要設計出突破傳統限制的新型複合隔膜。特別是,採用PVDF(聚偏氟乙烯)和其他先進聚合物材料的隔膜因其優異的熱穩定性和電化學性能而受到積極研究,這些性能符合下一代電池的要求。

隨著隔板技術的進步,鋰離子電池市場呈現快速成長態勢。預計到2030年,全球隔膜市場規模將從2025年的約22億美元增加至128億美元,年複合成長率超過12%。電動車的普及和對儲能系統(ESS)需求的不斷成長是推動這一成長的主要動力。尤其是對高性能電池的需求,成為隔膜技術創新的催化劑。同時,各大廠商正加速隔板的研發,以配合固態電池等下一代電池技術。

本報告對全球鋰離子電池隔膜市場進行了研究分析,深入了解了鋰離子電池行業的現狀和未來發展趨勢,包括2021年至2024年的歷史需求資料、2025年至2030年的市場預測,以及各大隔膜廠商的最新產品趨勢和技術戰略。

目錄

第1章 隔膜技術現況及發展趨勢

  • 引言
  • 隔膜的種類
  • 隔膜的特性
  • 隔膜的主要問題

第2章 聚烯烴基隔膜

  • 聚烯烴基隔膜的製造過程
  • 聚烯烴基隔膜與電池的關係
  • 聚烯烴基隔膜的最新發展趨勢

第3章 不織布隔膜

  • 不織布隔膜的製程
  • 不織布隔膜的特點
  • 不織布隔膜的最新發展趨勢

第4章 耐熱塗層隔膜的最新技術趨勢

  • 多層耐熱隔膜
  • 不織布隔膜
  • 含無機高安全性隔膜
  • 耐熱聚合物塗層隔膜
  • 微孔聚合物隔膜
  • 熱關斷隔膜
  • 電壓敏感隔膜

第5章 其他隔膜的最新技術趨勢

  • 陶瓷複合隔膜
  • 自然啟發鋰離子電池隔膜
  • 氧化還原活性鋰離子電池隔膜
  • 具關閉功能的鋰離子電池隔離膜

第6章 Domestic LIB隔膜產業的最新技術趨勢與發展

  • 案例研究 1:SKIET 濕式隔膜片技術
  • 案例研究 2:W-Scope 濕式隔膜技術
  • 案例研究 3:EnerEver 隔膜塗層技術
  • 案例研究 4:Upexchem 乾式隔膜技術
  • 最新科技趨勢概述

第7章 隔膜市場趨勢與展望

  • 隔膜需求現狀
  • 市場佔有率與出貨量趨勢:依隔膜供應商
  • 隔膜採購量趨勢:依主要LIB製造商
  • 隔膜產能展望
  • 隔膜需求展望
  • 隔膜供需展望
  • 隔膜價格趨勢
  • 隔膜市場規模展望

第8章 隔膜製造商現況

  • 韓國隔膜製造商
    • SKIET(SK IE Technology)
    • W-Scope(WCP,W-Scope Corporation)
    • EnerEver
  • 日本隔膜製造商
    • Asahi Kasei
    • Toray
    • Ube Maxell
    • Sumitomo Chemical
    • Teijin
  • 中國隔膜製造商
    • SEMCORP
    • Senior
    • Sinoma
    • Gellec
    • ZIMT
    • Huiqiang
    • Putailai
    • Horizon
    • Bosser
    • Lanketu
    • CZMZ
    • Jinhui
    • Green
  • 其他分離器製造商
    • Sepion Technology

第9章 隔膜原料廠商現況

  • 韓國隔膜原料製造商
    • KC
    • Osang Jaiel
  • 中國隔膜原料製造商
    • Estone
    • CHALCO
    • Sinocera
    • Tianma
    • Higiant
  • 其他隔膜原料生產廠家
    • TOR Minerals
    • Nabaltec

第10章 參考文獻

簡介目錄
Product Code: 247

Lithium-ion batteries play a crucial role in various sectors, including electric vehicles (EV), energy storage systems (ESS), and consumer electronics (CE). Consequently, continuous improvements in energy density, lifespan, and safety are essential. In meeting these demands, separators are gaining attention as a critical component that determines battery performance and stability. Separators allow ion transport through the electrolyte while preventing physical contact between the cathode and anode, thereby avoiding internal short circuits. Although classified as an inactive component, the thermal, mechanical, and electrochemical properties of separators significantly influence the cell's stability, lifespan, and safety.

Today, separator technology is advancing through the development of various materials and processes. Conventional polyolefin-based separators (PE, PP) are widely commercialized due to their excellent mechanical stability and thermal resistance. However, they exhibit performance limitations under high-power and high-temperature conditions. To address these challenges, ceramic coating technologies and nonwoven-based separators have been introduced, significantly improving thermal stability and durability. Additionally, the emergence of next-generation batteries, such as solid-state batteries, necessitates the design of new composite separators that surpass the limitations of conventional ones. In particular, separators utilizing PVDF (polyvinylidene fluoride) and other advanced polymer materials are being actively researched for their superior thermal stability and electrochemical performance, aligning with the requirements of next-generation batteries.

With the technological advancements in separators, the LIB market is experiencing rapid growth. According to SNE Research, the global separator market is projected to grow from approximately $2.2 billion in 2025 to $12.8 billion by 2030, achieving a CAGR of over 12%. This growth is primarily driven by the expansion of electric vehicle adoption and the increasing demand for energy storage systems (ESS). In particular, the demand for high-performance batteries is acting as a catalyst for innovations in separator technology. Simultaneously, major manufacturers are accelerating the development of separators tailored to next-generation battery technologies, such as solid-state batteries.

The 2025 report provides a comprehensive analysis of LIB separator technologies and the market. It delves into the development trends and performance enhancement strategies for key materials such as PE, PP, and PVDF. Additionally, it offers an in-depth examination of the evolution of ceramic coating and composite separator technologies, which have recently garnered significant attention. The report includes historical demand data from 2021 to 2024 based on global market data and presents market forecasts from 2025 to 2030. It also highlights the latest product trends and technological strategies of major separator manufacturers, offering valuable insights into the present and future of the LIB industry.

Separators have emerged as a critical component that determines the performance and safety of lithium-ion batteries (LIBs), going beyond being a mere part. This report provides technical insights and market forecasts for researchers and industry professionals, serving as an essential guide for comprehensively understanding the present and future of LIB separators. As the LIB industry continues to evolve, the significance of separator technology will grow even further in achieving environmental sustainability and the goals of a circular economy.

Strong Points of This Report:

  • 1. Comprehensive overview and technical details of separators
  • 2. Latest technological development trends in separators
  • 3. Market forecast data for separators
  • 4. Detailed information on manufacturing and product status of major separator companies

Table of Contents

1. Current Status and Development Trends of Separator Technology

  • 1.1. Introduction
    • 1.1.1. Current Status of Separator Development
    • 1.1.2. Role of Separator
  • 1.2. Types of Separator
    • 1.2.1. Microporous Polyolefin Separator
    • 1.2.2. Nonwoven Fabric
    • 1.2.3. Ceramic Composite Separator
  • 1.3. Separator Characteristics
    • 1.3.1. Chemical Stability
    • 1.3.2. Thickness
    • 1.3.3. Porosity
    • 1.3.4. Pore Size
    • 1.3.5. Torsional Rigidity
    • 1.3.6. Air Permeability
    • 1.3.7. Lithium-ion Permeability
    • 1.3.8. Mechanical Strength
    • 1.3.9. Wettability
    • 1.3.10. Electrolyte Absorption
    • 1.3.11. Thermal Shrinkage
    • 1.3.12. Shutdown Characteristics
    • 1.3.13. Cost
    • 1.3.14. Oxidation Stability
    • 1.3.15. Melt-down
  • 1.4. Major Issues of Separator
    • 1.4.1. Separator Properties
    • 1.4.2. Swelling and Softening of Separator
    • 1.4.3. Separator Damage by Lithium Dendrite
    • 1.4.4. Thermal Damage
    • 1.4.5. Mechanical Damage

2. Polyolefin-Based Separator

  • 2.1. Polyolefin-Based Separator Manufacturing Process
    • 2.1.1. Dry Method
    • 2.1.2. Wet Method
  • 2.2. Relationship Between Polyolefin-Based Separator and Battery
    • 2.2.1. Battery Performance
    • 2.2.2. Battery Safety
  • 2.3. Latest Development Trends of Polyolefin-Based Separator
    • 2.3.1. Surface Treatment
    • 2.3.2. Polymer-Functionalized Polyolefin Separator
    • 2.3.3. Ceramic-Coated/Deposited Polyolefin Separator
    • 2.3.4. Ceramic/Polymer-Functionalized Hybrid Polyolefin Separator

3. Nonwoven Fabric Separator

  • 3.1. Nonwoven Fabric Separator Manufacturing Process
    • 3.1.1. Dry-laid Method
    • 3.1.2. Wet-laid Method
    • 3.1.3. Spun-bond
    • 3.1.4. Melt-blown Process
    • 3.1.5. Web Bonding
  • 3.2. Properties of Nonwoven Fabric Separator
  • 3.3. Latest Development Trends of Nonwoven Fabric Separator
    • 3.3.1. Cellulose-Based Separator
    • 3.3.2. Fluoropolymer-Containing Separator
    • 3.3.3. PVA Separator
    • 3.3.4. PAN Separator
    • 3.3.5. PET Separator
    • 3.3.6. PI Separator
    • 3.3.7. PEI Separator
    • 3.3.8. Nylon Separator
    • 3.3.9. PEEK Separator
    • 3.3.10. PMMA Separator
    • 3.3.11. PBI Separator
    • 3.3.12. Poly(Para-Phenylene Benzobisoxazole) Separator
    • 3.3.13. Poly(m-Phenylene Isophthalamide) (PMIA) Separator
    • 3.3.14. Polyphenylene Sulfide Separator
    • 3.3.15. Polyphenylene Oxide Separator
    • 3.3.16. Polysulfone Separator

4. Latest Technological Trends in Heat-Resistant Coated Separators

  • 4.1. Multilayer Structure Heat-Resistant Separator
  • 4.2. Nonwoven Fabric Separator
  • 4.3. Inorganic-Introduced High-Safety Separator
    • 4.3.1. Non-Aqueous Inorganic Coated Separator
    • 4.3.2. Aqueous Inorganic Coated Separator
    • 4.3.3. Binder-Free Separator
    • 4.3.4. Multifunctional Inorganic Coated Separator
  • 4.4. Heat-Resistant Polymer Coated Separator
    • 4.4.1. Coated Separator with Heat-Resistant Polymer and Inorganic Materials
      • 4.4.1.1. Inorganic Coated Separator Using Heat-Resistant Polymer as a Binder
      • 4.4.1.2. Inorganic/Heat-Resistant Polymer Coated Separator
    • 4.4.2. Flame-Retardant Separator
      • 4.4.2.1. Separator Made with Flame-Retardant Materials
      • 4.4.2.2. Separator with Additional Flame-Retardant Materials
  • 4.5. Microporous Polymer Separator
  • 4.6. Thermal Shutdown Separator
  • 4.7. Voltage-Sensitive Separator

5. Latest Technological Trends in Other Separators

  • 5.1. Ceramic Composite Separator
  • 5.2. Nature-Inspired LIB Separator
  • 5.3. Redox-Active LIB Separator
  • 5.4. Shutdown-Functionalized LIB Separator

6. Latest Technological Trends and Developments in the Domestic LIB Separator Industry

  • 6.1. Case Study 1: SKIET Wet Separator Sheet Technology
    • 6.1.1. Overview of Separator Sheet Line Process
    • 6.1.2. Basic Required Properties of Separator Sheet
    • 6.1.3. Overview of Separator Coating Process
    • 6.1.4. Basic Required Properties of Coated Separator
  • 6.2. Case Study 2: W-Scope Wet Separator Technology
    • 6.2.1. Current Status of Wet Separator Development
    • 6.2.2. Development Direction of Wet Separator
  • 6.3. Case Study 3: EnerEver Separator Coating Technology
    • 6.3.1. Overview of Separator Coating Technology Development
    • 6.3.2. Prospects for Separator Coating Technology Development
  • 6.4. Case Study 4: Upexchem Dry Separator Technology
    • 6.4.1. Overview of Separator Technology Development
  • 6.5. Summary of Latest Technological Trends
    • 6.5.1. Enhanced Heat Resistance and Safety
    • 6.5.2. Ultra-Thin Separators
    • 6.5.3. Use of Advanced Materials
    • 6.5.4. Innovations in Manufacturing Process
    • 6.5.5. Additional Factors in Technology Development

7. Separator Market Trends and Outlook

  • 7.1. Current Status of Separator Demand
    • 7.1.1. Regional Separator Demand Status
    • 7.1.2. Material-Based Separator Demand Status
    • 7.1.3. Application-Based Separator Demand Status
  • 7.2. Market Share and Shipment Trends by Separator Suppliers
    • 7.2.1. Market Share Trends by Separator Suppliers
    • 7.2.2. Shipment Trends by Separator Suppliers
  • 7.3. Trends in Separator Purchasing Volume by Major LIB Manufacturers
    • 7.3.1. Samsung SDI (2020~2024E)
    • 7.3.2. LGES (2020~2024E)
    • 7.3.3. SK on (2020~2024E)
    • 7.3.4. Panasonic (2020~2024E)
    • 7.3.5. CATL (2020~2024E)
    • 7.3.6. BYD (2020~2024E)
    • 7.3.7. CALB (2020~2024E)
    • 7.3.8. EVE (2020~2024E)
    • 7.3.9. Gotion (2020~2024E)
  • 7.4. Separator Production Capacity Outlook
    • 7.4.1. Production Capacity Outlook by Type
    • 7.4.2. Production Capacity Outlook by Company
  • 7.5. Separator Demand Outlook
    • 7.5.1. Separator Demand Outlook by Region
    • 7.5.2. Separator Demand Outlook by Application
    • 7.5.3. Separator Demand Outlook by Type
  • 7.6. Separator Supply and Demand Outlook
    • 7.6.1. Global Separator Supply and Demand Outlook
    • 7.6.2. Separator Supply and Demand Outlook Excluding China's Capacity
  • 7.7. Separator Price Trends
    • 7.7.1. Separator Price Structure
    • 7.7.2. Separator Price Trends
  • 7.8. Separator Market Size Outlook

8. Status of Separator Manufacturers

  • 8.1. Korean Separator Manufacturers
    • 8.1.1. SKIET (SK IE Technology)
    • 8.1.2. W-Scope (WCP, W-Scope Corporation)
    • 8.1.3. EnerEver
  • 8.2. Japanese Separator Manufacturers
    • 8.2.1. Asahi Kasei
    • 8.2.2. Toray
    • 8.2.3. Ube Maxell
    • 8.2.4. Sumitomo Chemical
    • 8.2.5. Teijin
  • 8.3. Chinese Separator Manufacturers
    • 8.3.1. SEMCORP
    • 8.3.2. Senior
    • 8.3.3. Sinoma
    • 8.3.4. Gellec
    • 8.3.5. ZIMT
    • 8.3.6. Huiqiang
    • 8.3.7. Putailai
    • 8.3.8. Horizon
    • 8.3.9. Bosser
    • 8.3.10. Lanketu
    • 8.3.11. CZMZ
    • 8.3.12. Jinhui
    • 8.3.13. Green
  • 8.4. Other Separator Manufacturers
    • 8.4.1. Sepion Technology

9. Status of Separator Raw Material Manufacturers

  • 9.1. Korean Separator Raw Material Manufacturers
    • 9.1.1. KC
    • 9.1.2. Osang Jaiel
  • 9.2. Chinese Separator Raw Material Manufacturers
    • 9.2.1. Estone
    • 9.2.2. CHALCO
    • 9.2.3. Sinocera
    • 9.2.4. Tianma
    • 9.2.5. Higiant
  • 9.3. Other Separator Raw Material Manufacturers
    • 9.3.1. TOR Minerals
    • 9.3.2. Nabaltec

10. References