電池劣化的緩解/預測/診斷、技術現況及相關企業
市場調查報告書
商品編碼
1250021

電池劣化的緩解/預測/診斷、技術現況及相關企業

<2023> Mitigation/ Prediction/ Diagnosis of Battery Degradation; Technology Status and Related Companies

出版日期: | 出版商: SNE Research | 英文 537 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

電池老化是電池性能惡化的根本原因。特別是大容量、高輸出的電池如果嚴重劣化,效能就會下降,因此需要對電池劣化有深入的了解。

目前,針對劣化,廢棄電池診斷技術和快速充電技術的開發正在取得進展,市場正在形成。

診斷技術對於廢棄電池的再利用至關重要。近年來,多家OEM廠商一直致力於廢棄電池再利用業務,不少企業也以多種方式準備廢電池再利用新業務。

電動車需要較長的電池壽命和較短的充電時間才能超越傳統汽油/柴油引擎汽車的市場份額。這些是推動電池和電動車市場快速擴張的基本需求,因此緩解和抑制在惡劣條件下劣化的技術至關重要。

本報告對韓國電池產業進行了調查和分析,介紹了減緩劣化的策略以及診斷和預測劣化的各種技術。我們也提供國內外公司、市場和行業趨勢、專利和熱點技術的資訊。

目錄

第一章簡介

  • 技術競爭加劇
  • 使用後出現問題
  • 環境污染問題
  • 快充問題

第二章 鋰離子電池

  • 零件

第3章 惡化

  • 什麼是惡化?
  • 惡化機制

第四章 材料

  • 正極
    • 正極材料引起的劣化
    • 惡化/緩解因素
    • 惡化的影響
  • 負極
    • 負極材料引起的劣化
    • 惡化/緩解因素
    • 惡化的影響
  • 電解質
  • 惰性材料(黏合劑、集電器、隔膜和其他組件)的劣化
  • 其他劣化因素(老化、環境溫度、電池設計、使用者等)
  • 降解機制之間的關係
    • 正向回饋場景
    • 負回饋場景

第五章 細胞劣化的影響

  • 性能下降

第六章 電池劣化緩解策略

  • 活性物質的改良
    • 正極活性物質
    • 負極活性物質
    • SEI
  • 充電技術
    • 恆壓充電方式(CV)
    • 恆定電流充電方式(CC)
    • 恆定電流/恆壓充電方式(CC-CV)
    • 恆功率(CP)法
    • 恆定功率/恆壓充電方式(CP-CV)
    • 快速充電方式
    • 變電流衰減充電法(VCD)
    • 多級恆定電流充電方式(MCC)
    • 脈衝充電方式
    • 涓流充電方式

第7章 電池劣化診斷/預測技術

  • 分析方法:依劣化類型
  • 電化學分析技術
  • 非基於模型的分析
  • 基於模型的分析
  • 使用機器學習/人工智慧進行診斷和預測
  • 事後分析

第八章 電池劣化相關企業狀況

  • 韓國(20家)
  • 北美(15家公司)
  • 歐洲(5家公司)
  • 日本(5家)
  • 中國(10家)
  • 其他

第九章市場現況與展望

  • 電池管理系統
    • BMS全球市場展望(2021-2030)
    • BMS供應商:依電動車車型分類(2012-2024)
  • 快速充電器
    • 全球市場狀況
    • 美國快速充電器市場展望(2021-2030)
    • 現況:美國主要城市
    • 韓國快速充電器狀況:依地區劃分

第10章 電池劣化抑制/診斷相關專利(2017年-2021年)

  • 韓國專利

第11章 最新劣化診斷技術

  • 電荷轉移電阻行為分析
  • 溫度不均勻導致的局部鍍鋰分析
  • 電壓降分析
  • 增量容量分析
  • 差分電壓分析
  • 快充條件下石墨基負極界面分析
  • 負極塗層材料的開發及阻抗分析

第十二章 參考資料

簡介目錄
Product Code: 197

Battery degradation is the root cause of performance degradation of batteries. High-capacity and high-power batteries in particular require deep understanding about the degradation because its performance gets worse due to severe degradation.

Currently, concerning the degradation, development of diagnosis technology for waste batteries and fast charging has been carried out and the market has been formed.

Diagnosis technology is essential for reuse of waste batteries. Several OEMs have engaged in the business of reuse of waste batteries over the past several years, and many companies are preparing new businesses by using various applications where waste batteries can be reused.

Long battery life and short charging time are required for EVs to overcome the market share of traditional gasoline/diesel engine vehicles. These are fundamental needs that allow the battery and EV market to expand rapidly, and for this reason, mitigation/suppression technology against degradation under severe conditions is essential.

This report is divided into 11 chapters. Chapter 1-3 provides basic knowledge about battery degradation and needs of the technology, chapter 4-5 describe causes and effect of degradation, chapter 6-7 describe mitigation strategy for degradation and degradation diagnosis/prediction technology, chapter 10-9 describe patents and latest technology.

This report provides in-depth understanding of battery degradation, and introduces strategy to mitigate degradation and various technologies to diagnose and predict degradation. It also provides detailed information on Korean and international companies, markets and industry trends, and patents and notable technologies.

Table of Contents

1. Brief Introduction

  • 1.1. Intensified Technology Competition
  • 1.2. Issues after use
  • 1.3. Environmental pollution issue
  • 1.4. Fast Charging issues

2. Lithium-ion Batteries

  • 2.1. Components

3. Degradation

  • 3.1. What is degradation?
  • 3.2. Degradation mechanism

4. Materials

  • 4.1. Cathode
    • 4.1.1. Degradation due to cathode materials
    • 4.1.2. Degradation/Mitigation Factors
    • 4.1.3. Effects of Degradation
  • 4.2. Anode
    • 4.2.1. Degradation due to anode material
    • 4.2.2. Degradation/Mitigation Factors
    • 4.2.3. Effects of degradation
  • 4.3. Electrolyte
  • 4.4. Degradation of inactive materials (binder, current collector, separator, other components.)
  • 4.5. Other degradation factors (ageing conditions, ambient temperature, battery design, users, etc.)
  • 4.6. Connection between degradation mechanisms
    • 4.6.1. Positive-feedback scenario
    • 4.6.2. Negative-feedback scenario

5. Effects of Cell Degradation

  • 5.1. Performance Degradation

6. Battery degradation mitigation strategy

  • 6.1. Improvement of active material materials
    • 6.1.1. Cathode active materials
    • 6.1.2. Anode active materials
    • 6.1.3. SEI
  • 6.2. Charging Techniques
    • 6.2.1. Constant voltage charging method (CV)
    • 6.2.2. Constant current charging method (CC)
    • 6.2.3. Constant current/constant voltage charging method (CC-CV)
    • 6.2.4. Constant power (CP) method
    • 6.2.5. Constant power/constant voltage charging method (CP-CV)
    • 6.2.6. Boost charging method
    • 6.2.7. Varying current decay charging method (VCD)
    • 6.2.8. Multi-stage constant current charging method (MCC)
    • 6.2.9. Pulse charging method
    • 6.2.10. Trickle charging method

7. Battery degradation diagnosis/prediction technology

  • 7.1. Analysis techniques by degradation mode
    • 7.1.1. Structural change and decomposition analysis of active materials
    • 7.1.2. Particle destruction analysis
    • 7.1.3. Analysis of SEI layer growth
    • 7.1.4. Li plating analysis
  • 7.2. Electrochemical analysis techniques
    • 7.2.1. Cell voltage and capacity analysis
    • 7.2.2. Resistance Analysis
  • 7.3. Non-Model Based Analysis
    • 7.3.1. Battery internal factor diagnosis
    • 7.3.2. Battery external factor diagnosis
  • 7.4. Model-based analysis
    • 7.4.1. Types of Models
    • 7.4.2. SEI layer growth
    • 7.4.3. Li plating
    • 7.4.4. Structural change and decomposition of cathode
    • 7.4.5. Particle destruction
    • 7.4.6. Silicon additives
  • 7.5. Diagnosis and prediction by using machine learning/artificial intelligence
    • 7.5.1. Background of diagnostic technology by ML/AI
    • 7.5.2. Performance and safety prediction
    • 7.5.3. Degradation and life prediction
    • 7.5.4. Online estimation technology
  • 7.6. Post-Mortem Analysis
    • 7.6.1. Precautions for cell disassembly
    • 7.6.2. Cell opening procedure and component removal method
    • 7.6.3. Physical analysis technology
    • 7.6.4. Chemical analysis technology
    • 7.6.5. Thermal stability analysis

8. Status of companies related to battery degradation

  • 8.1. Korea (20 companies)
  • 8.2. North America (15 companies)
  • 8.3. Europe (5 companies)
  • 8.4. Japan (5 companies)
  • 8.5. China (10 companies)
  • 8.6. Others

9. Market status and outlook

  • 9.1. BMS
    • 9.1.1. Outlook for BMS global market (2021 - 2030)
    • 9.1.2. BMS suppliers by EV model (2012 - 2024)
  • 9.2. Fast Charger
    • 9.2.1. Global market status
    • 9.2.2. Outlook for US fast charger market (2021 - 2030)
    • 9.2.3. Current status by major US cities
    • 9.2.4. Status of fast chargers by region in Korea

10. Patents for Battery Degradation Suppression/Diagnosis (2017-2021)

  • 10.1. Patents in Korea

11. Latest technology for degradation diagnosis

  • 11.1. Behavior Analysis for Charge Transfer Resistance
  • 11.2. Analysis of local Li plating according to temperature nonuniformity
  • 11.3. IR Drop Analysis
  • 11.4. Incremental Capacity Analysis
  • 11.5. Differential Voltage Analysis
  • 11.6. Graphite-based anode interface analysis under fast charging conditions
  • 11.7. Development of Anode Coating Materials and Impedance Analysis

12. References