當前和未來的全固態電池製造技術:2023
市場調查報告書
商品編碼
1212745

當前和未來的全固態電池製造技術:2023

<2023> The Present and Future of All Solid-State Battery Manufacturing Technology

出版日期: | 出版商: SNE Research | 英文 232 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

鋰離子電池是當今最常用的電池,在對新型電子設備和電動汽車的爆炸性需求的推動下,通過不斷的技術發展提高了性能。 然而,由於其高能量密度,鋰離子電池存在著火和爆炸的風險。 為了避免這些風險,應用固態電解質的全固態電池作為下一代電池技術備受關注。

全球全固態電池市場已錄得180%的高增長,預計將從2022年的約2750萬美元增長至2030年的約400億美元。

本報告探討了全固態電池製造技術,概述了全固態電池、不同類型的關鍵部件、特性、製造工藝、挑戰和解決方案以及領先公司的製造技術。

內容

第一章全固態電池概述

  • 全固態電池 (ASB)
  • 全固態電池固體電解質
  • 全固態技術的趨勢
  • 全固態電池市場展望

第2章固體電解質

  • 氧化物固體電解質
    • 氧化物電解質的性質
    • 氧化物電解質的相關特性
    • 氧化物固體電解質的離子電導率及應用
    • NASION系統
    • 石榴石系列
    • 鈣鈦礦系統
    • 氧化物電解質的主要問題
    • 氧化物電解質的具體問題和解決方案
  • 硫化物固體電解質
    • 硫化物基電解質的特性:優點
    • 硫化物基電解質的特性:缺點
    • 硫化物電解液的特性
    • 硫化物基固體電解質的離子電導率及其應用
    • LPS 系列
    • LPS 系統:晶體結構
    • Thio-LISICON 系列
    • LGPS 系列
    • LGPS 系統:結構和離子電導率
    • 安捷洛特
    • 基於硫化物的電解質的具體問題和解決方案
  • 聚合物固體電解質
    • 聚合物基體類型和特性
    • 聚合物電解質類型和優點/缺點
    • 聚合物電解質的特點
    • 聚合物電解質問題及解決方案
  • 固體電解質相容性

第 3 章:全固態電池中的電極

  • 陰極
    • 應用於全固態電池的正極活性材料
    • 正極活性材料的發展趨勢
    • 陰極和復合陰極處理
  • 陽極
    • 矽陽極
    • 矽/石墨陽極
    • 鋰負極
    • 鋰金屬陽極處理
    • 無陽極
    • 沒有薄膜或陽極的應用
    • 鋰金屬和矽陽極氧化
    • 無陽極與其他陽極的比較
    • 鋰金屬負極和矽負極製造方法的比較

第 4 章固態電池

  • 全固態電池製造
    • 固體電解質處理
    • 細胞組裝
    • 電池完成
    • 全固態電池與鋰離子電池製造工藝對比
    • 全固態電池的材料成本
    • 全固態電池的製造成本
    • 全固態電池固體電解質的成本比較
    • 全固態電池的一個有前途的概念
    • 製造全固態電池
  • 氧化物全固態電池
  • 硫化物基全固態電池
  • 聚合物全固態電池
  • 電池能量密度

第5章全固態電池製造技術

  • 實驗室細胞製造
    • 實驗室級電池製造
    • 壓粉電池製造
    • 壓粉三極管製造工藝
    • 鈕扣電池製造工藝
    • 日本的 NEDO:全固態電池路線圖
    • 軟包電池製造工藝:NEDO標準電池
    • 軟包電池製造工藝:NEDO 演示電池
    • NEDO 大面積層壓示範電池的製造
    • 第一代固態演示電池 LIB
    • NEDO Japan:下一代固態示範電池 LIB
  • 電池製造技術
    • 全固態電池類型的優缺點
    • 根據固體電解質的類型適當的製造方法
    • CIP、WIP 和 HIP 的比較
    • 根據固體電解質的種類採用適當的方法
    • 電極/電解質層的緻密化過程
    • 複合電極和隔膜的製造
    • 層壓和堆疊過程
    • 漿料/溶液澆注法
    • 擠出過程
    • 流延工藝
    • 電解液注入工藝
  • 電池製造過程
    • 常見的 LIB 製造工藝
    • 全固態電池:陰極製造
    • 全固態電池:陽極製造
    • 固態電池:電池製造
    • 固體細胞:細胞調節
    • 固體細胞:細胞處理成本
    • Solid Cell:工藝比較
    • 電池製造的整體流程
    • 固體電解質隔膜製造工藝流程
    • 固體電解質隔膜製造工藝詳情
    • 固體電解質隔膜(複合陰極)的製造工藝
    • 陽極製造工藝流程
    • 陽極製造過程的細節
    • 鋰箔製造工藝
    • 複合陰極:主要製造工藝流程
    • 複合陰極製造工藝(詳情)
    • 複合陰極製造工藝及設備
    • 電芯組裝主要工藝流程
    • 電芯組裝的主要過程(詳情)
    • 電池組裝:堆棧製造過程
    • 各製造工藝優缺點比較
    • 氧化物固體電解質電池的製造工藝
    • 通過 LIB 工藝為 SSB 製造陰極和陽極
    • 使用 LIB 工藝對固體細胞進行後處理
  • 電池製造方法
    • 平壓機和輥壓機的局限性
    • HIP(熱等靜壓)和熱壓機的區別
    • 比較:傳統燒結法固體電解質與 HIP
    • 正極材料的濕法製造方法
    • 陰極活性材料表面塗層
    • 活性材料複合物的形成和球形的形成

第6章主要公司製造技術

  • TOYOTA
  • HONDA
  • Nissan
  • SES
  • Solid Power
  • Blue Solution
  • QuantumScape
  • ProLogium
  • Johnson Energy Storage
  • TaiyoYuden
簡介目錄
Product Code: 188

Title:
<2023> The Present and Future of All Solid-State Battery Manufacturing Technology

(Subtitle: In-depth Analysis on Manufacturing Technology and R&D Trend of Major Companies)

The performance of lithium-ion battery (LIB), most widely used today, has been improved through continuous technology development propped up with an explosive demand in new electronic devices and electric vehicles. Particularly, the energy density has been dramatically increased from 80Wh/kg in the nascent stage to 300Wh/kg of these days. However, a high energy density implies a possible risk of fire or explosion. Lithium-ion battery may have an explosion triggered bWy internal overheating, secondary heat release from outside, and electrical defect caused by mechanical damage, excessive discharging, and overcharging.

To prevent such risk, all solid-state battery to which solid electrolyte is applied has become regarded as a next-generation battery technology. Megatrends in all solid-state battery can be summarized as follows: excellent safety; high energy density; high power output; wide range of workable temperature; and simple battery structure. Thanks to these properties, all solid-state battery can be free from explosion risks. In addition, solid electrolyte has a better ionic conductivity than liquid electrolyte when the temperature is below 0°C or between 60~100°C.

According to market forecast by SNE Research, the global all solid-state battery market posted a high growth of 180%, reaching approx. 27.5 million dollar in 2022 and is expected to form a huge market worth of approx. 40 billion dollars in 2030. The Korean government also sees the next decade to be a turning point for countries to determine their positions in the global LIB market. Along with the announcement of <2030 K-Battery Development Strategy>, the government has been providing support for technology development with an aim to achieve the commercialization of all solid-state battery in 2027.

To brace for a rapid paradigm shift from lithium-ion battery to all solid-state battery, it is necessary to take an preemptive measure to carry out deep-dive research on key ASB materials and development of mass production technology. Meanwhile, the expected time frame for ASB commercialization has been postponed to 2030 because companies have not exerted sufficient effort to develop related materials and the production technology has not been fully established yet. Given all these circumstances, this report aims to present the cell configuration of all solid-state battery of which possibility in commercialization is highest. We identify the issues related to materials and manufacturing technology and then propose feasible solutions to those issues.

In addition, we analyze announcements and patent applications by major companies regarding the development of all solid-state battery to learn more about their manufacturing technology. Based on a deep-dive analysis on the manufacturing technology and processes, we identify their advantages/disadvantages and try to find suitable manufacturing processes for all solid-state battery.

Strong Points:

  • 1. All solid-state battery technology trend and market outlook
  • 2. Solid electrolyte-related issues and solutions
  • 3. Cell configuration and issues to consider in case of apply solid electrolyte to battery
  • 4. Comparison of all-solid-state battery cell manufacturing technology and process
  • 5. Trend of manufacturing technology by major companies such as Toyota, SES, Solid Power

Table of Contents

1. All-Solid-State Battery Overview

  • 1.1. All-Solid-State Battery (ASB)
    • 1.1.1. Limitations in LIB
    • 1.1.2. Necessity for All-solid-state Battery Development
    • 1.1.3. Application of All-solid-state Battery
    • 1.1.4. All-solid-state Battery Market Outlook
    • 1.1.5. All-solid-state Battery Patent Application Status by Country
    • 1.1.6. All-solid-state Battery Paper Publication Status by Country
  • 1.2. All-Solid-State Battery Solid Electrolyte
    • 1.2.1. Solid Electrolyte Type and Composition
    • 1.2.2. Solid Electrolyte Major Players by Type
    • 1.2.3. Solid Electrolyte Major Players' Trend
    • 1.2.4. Solid Electrolyte Patent Application Status by Type
    • 1.2.5. Inorganic Solid Electrolyte Patent Application Status by Type
  • 1.3. All-Solid-State Technology Trend
    • 1.3.1. OEMs' R&D and Response Status
    • 1.3.2. Material Parts Developers' R&D and Response Status
    • 1.3.3. Battery Makers' R&D and Response Status
    • 1.3.4. Battery Makers (OEMs) Response Status by Solid Electrolyte
    • 1.3.5. Expected ASB Production Timeline and Energy Density by Battery Makers
  • 1.4. All-Solid-State Battery Market Outlook
    • 1.4.1. Market Outlook by Research Firm
    • 1.4.2. Market Outlook by Electrolyte Type
    • 1.4.3. Market Expansion Stage
    • 1.4.4. Solid Electrolyte Market by Type
    • 1.4.5. Solid Electrolyte Market Share Outlook by Type

2. Solid Electrolyte

  • 2.1. Oxide-based Solid Electrolyte
    • 2.1.1. Properties of Oxide-based Electrolyte
    • 2.1.2. Related Properties of Oxide-based Electrolyte
    • 2.1.3. Ionic Conductivity and Applications of Oxide Solid Electrolyte by Type
    • 2.1.4. NASICON-based
    • 2.1.5. Garnet-based
    • 2.1.6. Perovskite-based
    • 2.1.7. Major Issues of Oxide Electrolyte
    • 2.1.8. Specific Issues and Solutions of Oxide Electrolyte
  • 2.2. Sulfide-based Solid Electrolyte
    • 2.2.1. Features of Sulfide-based Electrolyte: Advantages
    • 2.2.2. Features of Sulfide-based Electrolyte: Disadvantages
    • 2.2.3. Features of Sulfide-based Electrolyte
    • 2.2.4. Ionic Conductivity and Application of Sulfide-based Solid Electrolyte by Type
    • 2.2.5. LPS-based
    • 2.2.6. LPS-based: crystal structure
    • 2.2.7. Thio-LISICON based
    • 2.2.8. LGPS-based
    • 2.2.9. LGPS-based : Structure and ionic conductivity
    • 2.2.10. Agyrodites
    • 2.2.11. Specific Issues and Solutions for Sulfide-base Electrolyte
  • 2.3. Polymer Solid Electrolyte
    • 2.3.1. Types and Properties of Polymer Matrix
    • 2.3.2. Types and Benefit/Shortcomings of Polymer Electrolyte
    • 2.3.3. Features of Polymer Electrolyte
    • 2.3.4. Issues and Solutions of Polymer Electrolyte
  • 2.4. Compatibility of Solid Electrolyte
    • 2.4.1. Issues with ASB Cell to Consider
    • 2.4.2. Cathode-Electrolyte Compatibility Issue
    • 2.4.3. Anode-Electrolyte Compatibility Issue

3. All-Solid-State Battery Electrodes

  • 3.1. Cathode
    • 3.1.1. Cathode Active Material Applied to All-Solid-State Battery
    • 3.1.2. Trend in Cathode Active Material
    • 3.1.3. Cathode and Compound Cathode processing
  • 3.2. Anode
    • 3.2.1. Silicon Anode
    • 3.2.2. Si/Graphite Anode
    • 3.2.3. Lithium Anode
    • 3.2.4. Lithium Metal Anode processing
    • 3.2.5. Anodeless
    • 3.2.6. Thin film or anode-less application
    • 3.2.7. Lithium Metal and Silicon Anode processing
    • 3.2.8. Comparison of Anode-less and Other Anodes
    • 3.2.9. Comparison of production method for lithium metal anode and silicon anode

4. All Solid State Battery Cell

  • 4.1. Manufacturing of solid state batteries
    • 4.1.1. Solid Electrolyte processing
    • 4.1.2. Cell Assembly
    • 4.1.3. Cell Finishing
    • 4.1.4. Comparison of manufacturing process of Solid state batteries and LIBs (1)
    • 4.1.5. Comparison of manufacturing process of Solid state batteries and LIBs (2)
    • 4.1.6. Material cost of solid state batteries
    • 4.1.7. Manufacturing cost of solid state battery cells
    • 4.1.8. Cost Comparison of Solid Electrolytes for Solid State Batteries
    • 4.1.9. Promising Concept of Solid State Battery Cell
    • 4.1.10. Manufacturing of solid state battery cells
  • 4.2. Oxide-based Solid State Batteries
    • 4.2.1. Most promising cell configuration
    • 4.2.2. Considerations in terms of cell structure
    • 4.2.3. Considerations for Battery Production
    • 4.2.4. Key Performance Indicators
    • 4.2.5. Changes in Cell Concept
  • 4.3. Sulfide-based Solid State Batteries
    • 4.3.1. Cell Configuration
    • 4.3.2. Considerations in terms of cell structure
    • 4.3.3. Considerations for Battery Production
    • 4.3.4. Key Performance Indicators
    • 4.3.5. Structure (Silicon anode applied)
    • 4.3.6. Considerations in terms of cell structure when applying Si/C composite anode
    • 4.3.7. Considerations for cell production when applying Si/C composite anode
    • 4.3.8. Key performance indicators when applying Si/C composite anode
  • 4.4. Polymer-based Solid State Batteries
    • 4.4.1. Configuration of polymer solid state batteries
    • 4.4.2. Considerations in terms of cell structure
    • 4.4.3. Considerations for cell production
    • 4.4.4. Key performance indicators
  • 4.5. Cell Energy Density
    • 4.5.1. Assumptions for Base and Advanced Version of Cell Materials
    • 4.5.2. Weight and volume energy density
    • 4.5.3. Expected scenario and Roadmap

5. Manufacturing Technology of All Solid State Batteries

  • 5.1. Laboratory Cell Production
    • 5.1.1. Laboratory Level Cell Production
    • 5.1.2. Powder pressing Cell Production
    • 5.1.3. Three-electrode cell production process by using powder pressing
    • 5.1.4. Coin Cell Production Process
    • 5.1.5. All solid state battery roadmap of Japan NEDO
    • 5.1.6. Pouch Cell Production Process: NEDO Standard Cell
    • 5.1.7. Pouch Cell Production Process : NEDO demonstration cell
    • 5.1.8. Production of NEDO Large Area Laminated Demonstration Cell
    • 5.1.9. First Generation Solid State Demonstration Cell LIB
    • 5.1.10. Japan NEDO : Next Generation Solid State Demonstration Cell LIB
  • 5.2. Cell Manufacturing Technology
    • 5.2.1. Advantages and disadvantages as per solid state battery type
    • 5.2.2. Suitable manufacturing method according to solid electrolyte type
    • 5.2.3. Comparison of CIP, WIP, HIP
    • 5.2.4. Suitable methods according to solid electrolyte type
    • 5.2.5. Densification process of electrode/electrolyte layer
    • 5.2.6. Production of composite electrodes and separators
    • 5.2.7. Lamination & Stacking Process
    • 5.2.8. Slurry/solution casting process
    • 5.2.9. Extrusion process
    • 5.2.10. Tape casting process
    • 5.2.11. Electrolyte infusion process
  • 5.3. Cell Manufacturing Process
    • 5.3.1. Common LIB production process
    • 5.3.2. Solid state cells : Production of cathode
    • 5.3.3. Solid state cells : Production of anode
    • 5.3.4. Solid state cells : Production of cell
    • 5.3.5. Solid state cells : Cell conditioning
    • 5.3.6. Solid state cells : Cell processing cost
    • 5.3.7. Solid state cells : Process comparison
    • 5.3.8. Entire Flow of Cell Production
    • 5.3.9. Solid Electrolyte Separator Manufacturing Process Flow
    • 5.3.10. Details of Solid Electrolyte Separator Manufacturing Process
    • 5.3.11. Manufacturing process of solid electrolyte separator (on composite cathode)
    • 5.3.12. Anode production process flow
    • 5.3.13. Details of anode production process
    • 5.3.14. Lithium foil manufacturing process
    • 5.3.15. Composite Cathode : Main production process flow
    • 5.3.16. Composite cathode production process (in detail)
    • 5.3.17. Composite cathode production process and equipement
    • 5.3.18. Main process flow of cell assembly
    • 5.3.19. Main process of cell assembly (in detail)
    • 5.3.20. Cell assembly : Stack production process
    • 5.3.21. Comparison of advantages / disadvantages of each manufacturing process
    • 5.3.22. Production Process of Oxide Solid Electrolyte-Applied Cells
    • 5.3.23. Manufacture of cathode and anode for SSB by using LIB process
    • 5.3.24. Post-Process of Solid State Cells by using LIB Process
  • 5.4. Cell manufacturing method
    • 5.4.1. Limits of plane press and roll press
    • 5.4.2. Difference of HIP(Hot Isostatic Pressing) and Hot Pressing
    • 5.4.3. Comparison: solid electrolyte treated by conventional sintering method vs HIP
    • 5.4.4. Wet manufacturing method of cathode material
    • 5.4.5. Coating the surface of cathode active material
    • 5.4.6. Forming active material composite and shaping spherical form

6. Manufacturing Technology in Major Companies

  • 6.1. TOYOTA
    • 6.1.1. Identifying cause of performance degradation of Toyota's solid state battery
    • 6.1.2. Performance degradation in long cycle
    • 6.1.3. Toyota's counter-measures for the performance degradation
    • 6.1.4. Counter-measures and Solutions
    • 6.1.5. Toyota's Step of Applying Solid State Batteries
    • 6.1.6. Toyota's Solid State Battery Manufacturing: Pressing
    • 6.1.7. Toyota's Solid State Battery Manufacturing : Sublimable filler
    • 6.1.8. Toyota's Solid State Battery Manufacturing : HIP
    • 6.1.9. Toyota's Solid State Battery Manufacturing : Resin packaging
  • 6.2. HONDA
    • 6.2.1. Honda's Direction of Solid State Cell Manufacturing
    • 6.2.2. Honda's Direction of Solid State Cell Manufacturing
    • 6.2.3. Honda's Solid State Battery Manufacturing Process: Mixing
    • 6.2.4. Honda's Solid State Battery Manufacturing Process: Electrode Coating
    • 6.2.5. Solid State Battery Manufacturing Process : Bonding roll pressing
    • 6.2.6. Solid State Battery Manufacturing Process : Electrode slitting
    • 6.2.7. Solid State Battery Manufacturing Process : Bonding roll pressing
    • 6.2.8. Solid State Battery Manufacturing Process : Stacking
    • 6.2.9. Solid State Battery Manufacturing Process : Tab welding, assembly, sealing
    • 6.2.10. Solid State Battery Manufacturing Process : Aging, Inspection
  • 6.3. Nissan
    • 6.3.1. Direction of Solid State Cell Manufacturing
    • 6.3.2. Overview of Solid State Battery Manufacturing Process
    • 6.3.3. Solid State Battery Manufacturing Process
  • 6.4. SES
    • 6.4.1. SES Overall cell structure
    • 6.4.2. Cell Performance
    • 6.4.3. SES cell P/P line major processes
  • 6.5. Solid Power
    • 6.5.1. Solid state battery structure and development line-up
    • 6.5.2. Solid state cell manufacturing process
    • 6.5.3. Roadmap of Si Anode Solid State Batteries
    • 6.5.4. Roadmap of Li Anode Solid State Batteries
    • 6.5.5. Solid State Battery Production Roadmap
  • 6.6. Blue Solution
    • 6.6.1. LMP® Solid state battery structure
    • 6.6.2. Manufacturing process of Blue Solution
    • 6.6.3. Solid state battery roadmap
  • 6.7. QuantumScape
    • 6.7.1. Cell performance of solid state batteries
    • 6.7.2. Solide state cell manufacturing process and cell characteristics
    • 6.7.3. Solide state battery roadmap
  • 6.8. ProLogium
    • 6.8.1. Solid state battery cell structure
    • 6.8.2. Solid state battery structure and performance
    • 6.8.3. Solid state battery production line
    • 6.8.4. Solid state battery production process
  • 6.9. Johnson Energy Storage
    • 6.9.1. Cell information and related characteristics
    • 6.9.2. Slurry coating process
    • 6.9.3. Co-extrusion process
  • 6.10. TaiyoYuden
    • 6.10.1. MLCC Type solid state cell structure
    • 6.10.2. MLCC Type solid state cell production process