封面
市場調查報告書
商品編碼
1889461

抽水蓄能水力發電市場預測至2032年:按類型、容量、應用、最終用戶和地區分類的全球分析

Pumped Hydro Storage Market Forecasts to 2032 - Global Analysis By Type (Open-loop, and Closed-loop), Capacity (Small-Scale (Less than 100 MW), Medium-Scale (100 MW to 500 MW), and Large-Scale (More than 500 MW)), Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的研究,預計到 2025 年,全球抽水蓄能水力發電市場價值將達到 590 億美元,到 2032 年將達到 1,442 億美元。

預計在預測期內,抽水蓄能水力發電廠的複合年成長率將達到13.6%。抽水蓄能水力發電廠是指在電力充沛時將水抽入上游水庫,並在用電高峰期透過水輪機釋放水力發電的大型設施。這涉及場地開發、土木工程、水輪機、發電機和併網等環節。其優勢包括長期、低成本的儲能、電網穩定、頻率調節,以及透過在數小時至數天的時間段內平衡供需,支持高比例的間歇性可再生能源。

根據國際能源總署 (IEA) 和水力發電管理機構的數據,抽水蓄能 (PSH) 是世界上最大的公用事業規模儲能技術,全球整體裝置容量約為 160-200 吉瓦 (GW)。

政府支持和政策

政策制定者正透過慷慨的財政獎勵、可再生能源強制規定和長期收入穩定機制來降低投資風險並創造有利的經濟環境。此外,國家電網穩定和能源安全戰略明確將抽水蓄能作為整合風能和太陽能等間歇性可再生的基礎。這種自上而下的支持釋放了大量資金,對於確保該技術在能源轉型中發揮核心作用至關重要,並直接加速了全球市場發展和計劃運作。

高昂的資本成本和較長的前置作業時間

抽水蓄能電站(PHS)計劃前期投資高且開發週期長,是限制市場成長的重大障礙。這些計劃需要大規模的土木工程、專用設備以及漫長的環境核准流程,從規劃到運作往往需要十多年時間。這種資本密集且耗時的過程抑制了私人投資,尤其與電池儲能等部署速度更快的替代方案相比更是如此。因此,儘管市場對這項技術有著明顯的長期需求,但如此高的進入門檻限制了新計畫的數量,並減緩了市場整體擴張的速度。

現有水壩的現代化改造

對非發電水壩維修以增加抽水蓄能能力,為市場成長提供了巨大的機會。透過利用現有基礎設施和預先已通過核准的水權,這種方法可以規避許多傳統限制,並顯著降低資本成本和開發前置作業時間。此外,與新建計劃相比,它提供了一種以更低環境影響增加大規模電網級儲能容量的途徑。這項機會能夠有效擴展儲能資產,並為公用事業公司和政府增強電網韌性提供了一種極具吸引力且經濟高效的策略。

氣候變遷的影響

日益加劇的乾旱可能導致水庫水位大幅下降,嚴重影響電廠在用電高峰期的運作能力。反之,極端洪水可能破壞關鍵基礎設施,威脅水壩安全。這些與氣候相關的脆弱性顯著增加了運作的不確定性和財務風險,可能損害新投資的長期可行性,並使人們對抽水蓄能電站作為電力系統可靠性不可動搖的基礎這一認知產生質疑。

新冠疫情的影響:

疫情對抽水蓄能市場造成了嚴重衝擊,導致計劃進度大幅延誤。全國範圍內的封鎖和保持社交距離的措施使建設活動停滯,並擾亂了渦輪機和變壓器等關鍵部件的複雜全球供應鏈。這導致全球多個大型計劃成本大幅超支,並推遲了運作日期。然而,這場危機也凸顯了長時儲能對電網韌性的重要性,並使抽水蓄能作為一項戰略性基礎設施資產,重新成為各國政府經濟復甦計畫的關注焦點。

預計在預測期內,開放回路方法將佔據最大的市場佔有率。

由於開放回路系統擁有卓越的發電能力,且單位兆瓦成本通常低於閉迴路系統,預計在預測期內,閉合迴路系統將佔據最大的市場佔有率。這些計劃通常與自由流動的河流或現有水庫相連,受益於現有的水文研究,並可利用現有水體,從而簡化規劃並降低初始資本支出。成熟的技術和吉瓦級的大容量儲能能力鞏固了其市場主導地位,使其成為大規模電網穩定和公用事業規模可再生能源發電電站併網的首選解決方案。

預計在預測期內,小規模(小於100兆瓦)電力市場將實現最高的複合年成長率。

由於其柔軟性以及較低的財務和環境門檻,預計小規模(<100兆瓦)專案在預測期內將實現最高成長率。這些計劃面積小,監管審查相對寬鬆,開發週期也顯著縮短,因此對私人投資極具吸引力,並能有效緩解當地電網的瓶頸。此外,它們非常適合服務偏遠地區的微電網,提高特定區域的電網穩定性,並支援分散式可再生能源的併網,從而推動這一細分市場快速擴張並實現高成長率。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率,這主要得益於中國和印度的大規模投資。兩國的國家能源安全政策和雄心勃勃的可再生能源目標正在推動大型抽水蓄能電站(PHS)計劃的發展。該地區經濟的快速成長、電力需求的不斷攀升,以及應對新增風能和太陽能發電容量間歇性的迫切需求,都催生了對大規模儲能的空前需求,從而鞏固了亞太地區在可預見的未來全球抽水蓄能電站市場的領先地位。

年複合成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,這主要得益於新興經濟體持續推出的雄心勃勃的政府計劃和扶持政策。印度、澳洲和東南亞多個國家正處於抽水蓄能電站發展週期的早期至中期階段,新計畫公告和開工建設層出不窮。這將帶來一波新增產能,推動其成長速度超過那些擁有更大現有產能的成熟市場。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,對主要國家的市場規模和複合年成長率進行估算和預測(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 摘要
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

第5章 全球抽水蓄能水力發電市場(按類型分類)

  • 開放回路
  • 閉合迴路

6. 全球抽水蓄能水力發電市場(以容量計)

  • 小規模(小於100兆瓦)
  • 中型(100兆瓦至500兆瓦)
  • 大型(超過500兆瓦)

7. 全球抽水蓄能水力發電市場(依應用領域分類)

  • 能源平衡調整
  • 頻率調節
  • 季節性存儲
  • 穩定可再生能源產能
  • 駭啟動服務
  • 其他用途

8. 全球抽水蓄能水力發電市場(依最終用戶分類)

  • 公共產業和獨立發電商(IPP)
  • 系統操作員

9. 全球抽水蓄能水力發電市場(依地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第11章 企業概況

  • Voith GmbH &Co. KGaA
  • ANDRITZ AG
  • Siemens AG
  • General Electric Company
  • Enel SpA
  • Electricite de France SA
  • Iberdrola SA
  • NextEra Energy, Inc.
  • Duke Energy Corporation
  • Mitsubishi Heavy Industries, Ltd.
  • Toshiba Energy Systems &Solutions Corporation
  • China Three Gorges Corporation
  • Power Construction Corporation of China
  • PJSC RusHydro
  • Engie SA
  • Black &Veatch Corporation
  • Fluor Corporation
  • Sinohydro Corporation Limited
  • Tata Power Company Limited
  • Genex Power Limited
Product Code: SMRC32815

According to Stratistics MRC, the Global Pumped Hydro Storage Market is accounted for $59.0 billion in 2025 and is expected to reach $144.2 billion by 2032, growing at a CAGR of 13.6% during the forecast period. The pumped hydro storage covers large-scale facilities that pump water to an upper reservoir when electricity is abundant and release it through turbines to generate power during peak demand. It involves site development, civil works, turbines, generators, and grid integration. Benefits include long-duration, cost-effective energy storage, grid stability, frequency regulation, and support for high shares of intermittent renewables by balancing supply and demand over hours or days.

According to the IEA and hydropower authorities, pumped-storage hydropower (PSH) is the world's largest utility-scale storage technology with roughly 160-200 GW of installed capacity globally.

Market Dynamics:

Driver:

Government Support & Policies

Through substantial financial incentives, renewable energy mandates, and long-term revenue stabilization mechanisms, policymakers are de-risking investments and creating a favorable economic landscape. Furthermore, national strategies targeting grid stability and energy security are explicitly prioritizing PHS as a cornerstone for integrating intermittent renewables like wind and solar. This top-down support is crucial for unlocking the massive capital required and ensuring the technology's central role in the energy transition, directly accelerating market development and project commissioning globally.

Restraint:

High Capital Cost & Long Lead Times

The significant upfront investment and protracted development cycles for PHS projects present a major barrier to market growth. These projects require extensive civil works, specialized equipment, and lengthy environmental approvals, often spanning over a decade from planning to operation. Such a capital-intensive and time-consuming process deters private investment, especially when compared to faster-deploying alternatives like battery storage. Consequently, this high barrier to entry limits the number of new projects initiated, restraining the overall pace of market expansion despite the clear long-term need for the technology.

Opportunity:

Modernization of Existing Dams

Retrofitting non-powered dams with PHS capabilities presents a significant opportunity for market growth. This approach bypasses many of the traditional restraints by utilizing existing infrastructure and pre-approved water rights, dramatically reducing both capital costs and development lead times. Moreover, it offers a path to add significant grid-scale storage capacity with a lower environmental footprint than greenfield projects. This opportunity allows for a more efficient expansion of energy storage assets, providing a compelling and cost-effective strategy for utilities and governments to bolster grid resilience.

Threat:

Climate Change Impacts

Intensified droughts can drastically reduce water reservoir levels, crippling a plant's ability to generate power when it is most needed. Conversely, extreme flooding events can damage critical infrastructure and threaten dam safety. These climate vulnerabilities introduce significant operational uncertainty and financial risk, potentially undermining the long-term business case for new investments and challenging the perceived role of PHS as an unwavering bedrock of grid reliability.

Covid-19 Impact:

The pandemic severely disrupted the pumped hydro storage market, causing extensive delays in project timelines. Nationwide lockdowns and social distancing mandates halted construction activity and disrupted complex global supply chains for critical components like turbines and transformers. This led to significant cost overruns and postponed commissioning dates for major projects worldwide. However, the crisis also underscored the indispensable value of long-duration energy storage for grid resilience, leading to a renewed governmental focus on PHS in economic recovery packages as a strategic infrastructure asset.

The open-loop segment is expected to be the largest during the forecast period

The open-loop segment is expected to account for the largest market share during the forecast period due to its superior energy generation capacity and generally lower specific cost per megawatt compared to closed-loop systems. These projects, often connected to naturally flowing rivers or existing reservoirs, benefit from existing hydrological studies and can leverage pre-existing water bodies, which simplifies planning and reduces initial capital outlay. Their proven technology and ability to provide massive, gigawatt-scale storage make them the preferred solution for large-scale grid stabilization and integrating utility-scale renewable energy farms, securing their leading market position.

The small-scale (Less than 100 MW) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the small-scale (less than 100 MW) segment is predicted to witness the highest growth rate due to its flexibility and reduced financial and environmental hurdles. These projects require a smaller land footprint, face less stringent regulatory scrutiny, and have significantly shorter development cycles, making them attractive for private investment and for addressing localized grid constraints. Additionally, they are ideal for servicing remote microgrids, enhancing grid stability in specific regions, and supporting the integration of distributed renewable resources, a market niche that is expanding quickly and driving high growth rates.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, anchored by massive investments in China and India, where national energy security policies and ambitious renewable energy targets are driving the development of colossal PHS projects. The region's rapid economic growth, escalating electricity demand, and urgent need to manage the intermittency of its vast new wind and solar capacity create an unparalleled demand for bulk energy storage, solidifying Asia Pacific's position as the global PHS market leader for the foreseeable future.

Region with highest CAGR:

During the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, fueled by the ongoing rollout of ambitious government plans and supportive policies across emerging economies. Countries like India, Australia, and several in Southeast Asia are in the early to mid-stages of their PHS development cycles, leading to a flurry of new project announcements and construction starts. This represents a wave of new capacity additions that will drive a growth rate exceeding that of more mature markets, which have a larger established base.

Key players in the market

Some of the key players in Pumped Hydro Storage Market include Voith GmbH & Co. KGaA, ANDRITZ AG, Siemens AG, General Electric Company, Enel SpA, Electricite de France SA, Iberdrola SA, NextEra Energy, Inc., Duke Energy Corporation, Mitsubishi Heavy Industries, Ltd., Toshiba Energy Systems & Solutions Corporation, China Three Gorges Corporation, Power Construction Corporation of China, PJSC RusHydro, Engie SA, Black & Veatch Corporation, Fluor Corporation, Sinohydro Corporation Limited, Tata Power Company Limited, and Genex Power Limited.

Key Developments:

In September 2025, International technology group ANDRITZ has received an order from Adani Green Energy Limited (AGEL), India's largest renewable energy company and a leading global player, to equip the new Gandikota pumped storage plant in the YSR Kadapa district of Andhra Pradesh, India.

In September 2025, ANDRITZ announced an order to supply reversible pump-turbines, motor-generators and related electromechanical equipment for the new Gandikota pumped storage plant in Andhra Pradesh.

In April 2023, Voith Hydro wins order to expand Kruonis pumped storage plant in Lithuania. To offset the volatility of these energy sources, the partially state-owned Ignitis Group company Ignitis Gamyba is investing around EUR 150 million in the expansion of the Kruonis pumped storage hydropower facility, where an additional, fifth unit will be installed.

Types Covered:

  • Open-loop
  • Closed-loop

Capacities Covered:

  • Small-Scale (Less than 100 MW)
  • Medium-Scale (100 MW to 500 MW)
  • Large-Scale (More than 500 MW)

Applications Covered:

  • Energy Balancing
  • Frequency Regulation
  • Seasonal Storage
  • Renewable Capacity Firming
  • Black Start Services
  • Other Applications

End Users Covered:

  • Utilities and Independent Power Producers (IPPs)
  • System Operators

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Pumped Hydro Storage Market, By Type

  • 5.1 Introduction
  • 5.2 Open-loop
  • 5.3 Closed-loop

6 Global Pumped Hydro Storage Market, By Capacity

  • 6.1 Introduction
  • 6.2 Small-Scale (Less than 100 MW)
  • 6.3 Medium-Scale (100 MW to 500 MW)
  • 6.4 Large-Scale (More than 500 MW)

7 Global Pumped Hydro Storage Market, By Application

  • 7.1 Introduction
  • 7.2 Energy Balancing
  • 7.3 Frequency Regulation
  • 7.4 Seasonal Storage
  • 7.5 Renewable Capacity Firming
  • 7.6 Black Start Services
  • 7.7 Other Applications

8 Global Pumped Hydro Storage Market, By End User

  • 8.1 Introduction
  • 8.2 Utilities and Independent Power Producers (IPPs)
  • 8.3 System Operators

9 Global Pumped Hydro Storage Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Voith GmbH & Co. KGaA
  • 11.2 ANDRITZ AG
  • 11.3 Siemens AG
  • 11.4 General Electric Company
  • 11.5 Enel SpA
  • 11.6 Electricite de France SA
  • 11.7 Iberdrola SA
  • 11.8 NextEra Energy, Inc.
  • 11.9 Duke Energy Corporation
  • 11.10 Mitsubishi Heavy Industries, Ltd.
  • 11.11 Toshiba Energy Systems & Solutions Corporation
  • 11.12 China Three Gorges Corporation
  • 11.13 Power Construction Corporation of China
  • 11.14 PJSC RusHydro
  • 11.15 Engie SA
  • 11.16 Black & Veatch Corporation
  • 11.17 Fluor Corporation
  • 11.18 Sinohydro Corporation Limited
  • 11.19 Tata Power Company Limited
  • 11.20 Genex Power Limited

List of Tables

  • Table 1 Global Pumped Hydro Storage Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Pumped Hydro Storage Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Pumped Hydro Storage Market Outlook, By Open-loop (2024-2032) ($MN)
  • Table 4 Global Pumped Hydro Storage Market Outlook, By Closed-loop (2024-2032) ($MN)
  • Table 5 Global Pumped Hydro Storage Market Outlook, By Capacity (2024-2032) ($MN)
  • Table 6 Global Pumped Hydro Storage Market Outlook, By Small-Scale (Less than 100 MW) (2024-2032) ($MN)
  • Table 7 Global Pumped Hydro Storage Market Outlook, By Medium-Scale (100 MW to 500 MW) (2024-2032) ($MN)
  • Table 8 Global Pumped Hydro Storage Market Outlook, By Large-Scale (More than 500 MW) (2024-2032) ($MN)
  • Table 9 Global Pumped Hydro Storage Market Outlook, By Application (2024-2032) ($MN)
  • Table 10 Global Pumped Hydro Storage Market Outlook, By Energy Balancing (2024-2032) ($MN)
  • Table 11 Global Pumped Hydro Storage Market Outlook, By Frequency Regulation (2024-2032) ($MN)
  • Table 12 Global Pumped Hydro Storage Market Outlook, By Seasonal Storage (2024-2032) ($MN)
  • Table 13 Global Pumped Hydro Storage Market Outlook, By Renewable Capacity Firming (2024-2032) ($MN)
  • Table 14 Global Pumped Hydro Storage Market Outlook, By Black Start Services (2024-2032) ($MN)
  • Table 15 Global Pumped Hydro Storage Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 16 Global Pumped Hydro Storage Market Outlook, By End User (2024-2032) ($MN)
  • Table 17 Global Pumped Hydro Storage Market Outlook, By Utilities and Independent Power Producers (IPPs) (2024-2032) ($MN)
  • Table 18 Global Pumped Hydro Storage Market Outlook, By System Operators (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.