封面
市場調查報告書
商品編碼
1889406

電動車(EV)牽引逆變器市場預測至2032年:按組件、設計類型、推進方式、車輛類型、冷卻系統、額定功率、分銷管道和地區分類的全球分析

Electric Vehicle Traction Inverter Market Forecasts to 2032 - Global Analysis By Component, Design Type, Propulsion Type, Vehicle Type, Cooling System, Power Rating, Distribution Channel, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,全球電動車 (EV) 牽引逆變器市場規模預計在 2025 年達到 78 億美元,預計到 2032 年將達到 219 億美元,預測期內複合年成長率 (CAGR) 為 15.8%。電動車 (EV) 牽引逆變器市場專注於將直流電池電能轉換為交流電,供車輛電動馬達使用的電力電子裝置。

這包括提供給汽車製造商和一級供應商的半導體裝置、控制軟體、冷卻系統和整合式驅動單元。其優點包括提高動力傳動系統效率、實現更平順的加速、實現更精確的扭力控制以及延長續航里程。同時,寬能能隙半導體技術的進步正在降低電動車動力傳動系統系統的重量、損耗和整體成本。

電動汽車的快速傳播

全球電氣化進程在各國政府嚴格的排放氣體法規和大規模消費者獎勵的推動下,正直接加速電動車的生產。隨著汽車製造商迅速擴大其電動車產品線以滿足激增的需求,作為電動車動力傳動系統關鍵部件的牽引逆變器的需求也相應成長。這為逆變器製造商創造了強勁的直接需求管道,確保了市場擴張。此外,公共充電基礎設施的持續改善正在緩解里程焦慮,鼓勵更多消費者轉向電動出行,從而維持這一成長勢頭。

溫度控管挑戰

有效的溫度控管技術複雜且成本高昂,需要先進的冷卻系統和材料。隨著產業追求更高的功率密度和更快的充電速度,發熱量增加,這項挑戰也隨之加劇。因此,管理這種熱負荷會增加整個系統的成本和複雜性,形成一道持續存在的技術壁壘,可能延緩新車型的開發,增加消費者車輛的最終成本,並抑制市場成長。

使用寬能能隙半導體

寬能能隙(WBG)半導體的出現,尤其是碳化矽(SiC)和氮化鎵(GaN),帶來了變革性的機會。這些材料能夠製造出比傳統矽基逆變器更有效率、體積更小、重量更輕的逆變器,從而為電動車帶來顯著優勢,包括更長的續航里程和更低的功率損耗。隨著寬能能隙半導體製造成本的降低,將其整合到下一代逆變器中將成為關鍵的競爭優勢,使製造商能夠在快速創新的市場中獲取價值,並推動未來性能標準的發展。

技術標準化方面的問題

驅動逆變器架構、電壓等級和通訊協定缺乏全球標準化構成重大威脅。這種不統一性迫使製造商為不同的原始設備製造商 (OEM) 和地區開發多種產品變體,從而增加了研發成本和生產複雜性。它還會導致市場碎片化,阻礙與充電基礎設施的互通性,並造成供應鏈效率低。這種多樣性最終會減緩產業的擴充性,增加所有相關人員的成本,並有可能阻礙電動車技術的廣泛應用。

新冠疫情的影響:

新冠疫情初期,由於工廠停工和嚴重的供應鏈瓶頸,電動車牽引逆變器市場受到衝擊,生產停滯,車輛上市延遲。然而,這場危機也成為了推動長期成長的催化劑。疫情封鎖結束後,各國政府推出大規模刺激計劃,大力推動電動車發展,將其作為綠色復甦措施的一部分。同時,消費者對永續性和個人交通工具日益成長的興趣也增加了對電動車的需求。因此,在經歷了短暫的下滑之後,市場呈現強勁的V型復甦。最終,疫情加速了汽車產業向電氣化的轉型,確保了作為電動車關鍵零件的牽引逆變器擁有強勁的長期成長前景。

預計在預測期內,功率模組細分市場將佔據最大的市場佔有率。

預計在預測期內,功率模組將佔據最大的市場佔有率。這是因為它是驅動逆變器的核心組件,包含負責功率轉換的關鍵絕緣柵雙極電晶體(IGBT) 或碳化矽 MOSFET。與其他逆變器組件(例如控制器和感測器)相比,功率高成本,因此其佔據最大的收入佔有率也就不足為奇了。此外,旨在提高這些模組功率輸出和散熱性能的持續技術創新,直接提升了逆變器的整體效率,從而使其在市場材料清單(BOM) 中佔據主導地位。

預計在預測期內,電池式電動車(BEV)細分市場將呈現最高的複合年成長率。

預計在預測期內,電池式電動車(BEV)細分市場將實現最高成長率。與混合動力汽車不同,純電動車完全依靠電力動力傳動系統,僅需一台高容量牽引逆變器。全球零排放汽車法規的推動使得純電動車車型遠勝於混合動力汽車型,促使幾乎所有主要汽車製造商都推出了新款純電動車。這種對逆變器驅動的完全依賴,加上純電動車市場本身的快速擴張,是推動該細分市場逆變器銷售的強勁成長要素。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率。這項優勢牢牢源自於該地區作為全球電動車製造和銷售中心的地位,而中國正是這一中心的領導者。成熟完善的一體化供應鏈、政府的扶持政策以及全球主要電動車製造商和供應商的集中,共同建構了獨特的生產生態系統。此外,全球最大的電動車消費群體推動了強勁的區域需求,確保了牽引逆變器市場龐大且發展成熟,從而鞏固了亞太地區的市場領先地位。

複合年成長率最高的地區:

亞太地區預計將在預測期內實現最高的複合年成長率,這主要得益於政府對電動車的持續支持、充電基礎設施的快速改善,以及區域電動車市場競爭激烈的環境,這種競爭環境推動了持續的創新和新車型的推出。此外,主要企業在該地區擴大產能的大規模投資預計也將繼續推動這一強勁的成長動能。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶要求,提供主要國家的市場估算和預測以及複合年成長率(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要企業的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 摘要
  • 相關利益者
  • 調查範圍
  • 調查方法
  • 研究材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球電動車 (EV) 牽引逆變器市場(按組件分類)

  • 電源模組
  • 微控制器單元(MCU)
  • 閘門驅動板
  • 直流鏈路電容器
  • 電流感測器
  • 其他部件

6. 全球電動車 (EV) 牽引逆變器市場依設計類型分類

  • 整合逆變器系統
  • 獨立式/隔離式逆變器系統

7. 全球電動車 (EV) 牽引逆變器市場(按推進類型分類)

  • 電池式電動車(BEV)
  • 插電式混合動力電動車(PHEV)
  • 混合動力電動車(HEV)
  • 燃料電池電動車(FCEV)

8. 全球電動車 (EV) 牽引逆變器市場(按車輛類型分類)

  • 搭乘用車
  • 輕型商用車(LCV)
  • 重型商用車(HCV)
  • 公車和遠距

9. 全球電動車(EV)牽引逆變器市場(依冷卻系統分類)

  • 液冷
  • 空氣冷卻

第10章 全球電動車(EV)牽引逆變器市場(依額定輸出功率分類)

  • 小於100千瓦
  • 100kW~200kW
  • 200kW~300kW
  • 超過300千瓦

第11章 全球電動車(EV)牽引逆變器市場(依通路分類)

  • OEM(原始設備製造商)
  • 售後市場

第12章 全球電動車牽引逆變器市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第13章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 併購
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第14章 企業概況

  • Robert Bosch GmbH
  • DENSO Corporation
  • Hitachi Astemo Ltd.
  • Continental AG
  • Mitsubishi Electric Corporation
  • Valeo SE
  • Vitesco Technologies Group AG
  • BorgWarner Inc.
  • BYD Company Limited
  • ZF Friedrichshafen AG
  • Tesla, Inc.
  • Nidec Corporation
  • Inovance Automotive Technology Co., Ltd.
  • Infineon Technologies AG
  • NXP Semiconductors NV
  • onsemi Corporation
  • STMicroelectronics NV
  • Lear Corporation
Product Code: SMRC32811

According to Stratistics MRC, the Global Electric Vehicle (EV) Traction Inverter Market is accounted for $7.8 billion in 2025 and is expected to reach $21.9 billion by 2032, growing at a CAGR of 15.8% during the forecast period. The electric vehicle (EV) traction inverter market focuses on power electronics that convert DC battery power into AC power for electric motors in vehicles. It includes semiconductor devices, control software, cooling systems, and integrated drive units supplied to automakers and tier-one suppliers. Benefits include higher drivetrain efficiency, smoother acceleration, precise torque control, and extended range, while advances in wide-bandgap semiconductors help reduce system weight, losses, and overall EV powertrain costs.

Market Dynamics:

Driver:

Rapid EV Adoption

The global push for electrification, fueled by stringent government emission regulations and substantial consumer incentives, is directly accelerating EV production. As automakers rapidly expand their electric portfolios to meet this surge in demand, the requirement for traction inverters, a fundamental component in every EV powertrain, grows proportionally. This creates a robust, direct-demand pipeline for inverter manufacturers, ensuring market expansion. Furthermore, continuous improvements in public charging infrastructure are alleviating range anxiety, thereby encouraging more consumers to transition to electric mobility and sustaining this growth trajectory.

Restraint:

Thermal Management Challenges

Effective thermal management is technically complex and expensive; requiring advanced cooling systems and materials. This challenge is amplified by the industry's push for higher power densities and faster charging times, which intensify heat generation. Consequently, managing this thermal load increases the overall system cost and complexity, potentially restraining market growth by posing a persistent engineering hurdle that can delay new model development and increase final vehicle costs for consumers.

Opportunity:

Wide Bandgap Semiconductor Adoption

The emergence of Wide Bandgap (WBG) semiconductors, primarily Silicon Carbide (SiC) and Gallium Nitride (GaN), presents a transformative opportunity. These materials enable inverters that are significantly more efficient, smaller, and lighter than those using traditional silicon. This results in real benefits for electric vehicles, such as a longer driving range and less power loss. As production costs for WBG semiconductors decrease, their integration into next-generation inverters will become a key competitive differentiator, allowing manufacturers to capture value in a rapidly innovating market and drive future performance benchmarks.

Threat:

Technology Standardization Issues

The absence of global standardization in traction inverter architecture, voltage levels, and communication protocols poses a significant threat. This lack of uniformity forces manufacturers to develop multiple product variations for different OEMs and regions, increasing R&D expenses and production complexity. Moreover, it can lead to market fragmentation, hinder interoperability with charging infrastructure, and create supply chain inefficiencies. Such variability ultimately slows down the overall industry scalability and can increase costs for all stakeholders, potentially delaying the widespread adoption of EV technology.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the EV traction inverter market due to factory shutdowns and significant supply chain bottlenecks, which halted production and delayed vehicle launches. However, the crisis also served as a catalyst for long-term growth. Following the lockdowns, substantial government stimulus packages strongly promoted electric mobility as part of green recovery initiatives. At the same time, an increased consumer focus on sustainability and personal transportation enhanced EV demand. As a result, after a brief downturn, the market experienced a robust V-shaped recovery. Ultimately, the pandemic accelerated the automotive industry's shift toward electrification, ensuring strong, long-term growth prospects for traction inverters, a vital component of electric vehicles.

The power module segment is expected to be the largest during the forecast period

The power module segment is expected to account for the largest market share during the forecast period, as it represents the core value component of the traction inverter, housing the critical insulated-gate bipolar transistors (IGBTs) or SiC MOSFETs that manage power conversion. Its high cost relative to other inverter sub-components, such as controllers and sensors, naturally grants it the largest revenue share. Also, constant innovation aimed at making these modules more powerful and better at handling heat is directly related to the overall efficiency of the inverter, which keeps it at the top of the market's bill of materials.

The battery electric vehicle (BEV) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the battery electric vehicle (BEV) segment is predicted to witness the highest growth rate because, unlike hybrids, BEVs rely solely on their electric powertrain and require a single, high-capacity traction inverter. The global regulatory push for zero-emission vehicles is disproportionately favoring pure electric models over hybrids, leading to a flood of new BEV model launches from nearly every major automaker. This singular dependence on the inverter for propulsion, combined with the aggressive expansion of the BEV market itself, creates a powerful growth vector for inverter sales within this segment.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. This dominance is firmly rooted in the region's status as the global epicenter for EV manufacturing and sales, led by China. The presence of a mature and integrated supply chain, supportive government policies, and the concentration of major global EV manufacturers and suppliers create an unrivaled production ecosystem. Furthermore, strong domestic demand from the world's largest consumer base for electric vehicles ensures a vast and established market for traction inverters, solidifying its leadership in market share.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by relentless government support for electrification, rapidly improving charging infrastructure, and the intensely competitive nature of its domestic EV market, which spurs constant innovation and new model releases. Moreover, significant investments from both local and international players to expand production capacity within the region will continue to fuel this exceptional growth momentum throughout the forecast period.

Key players in the market

Some of the key players in Electric Vehicle (EV) Traction Inverter Market include Robert Bosch GmbH, DENSO Corporation, Hitachi Astemo Ltd., Continental AG, Mitsubishi Electric Corporation, Valeo SE, Vitesco Technologies Group AG, BorgWarner Inc., BYD Company Limited, ZF Friedrichshafen AG, Tesla, Inc., Nidec Corporation, Inovance Automotive Technology Co., Ltd., Infineon Technologies AG, NXP Semiconductors N.V., onsemi Corporation, STMicroelectronics N.V., and Lear Corporation.

Key Developments:

In November 2025, Bosch Semiconductors highlighted its new EG120 high-voltage SiC gate-driver IC, designed to "bring intelligence directly into the traction inverter" and improve efficiency, safety and integration in EV traction inverter designs.

In October 2025, DENSO announced a newly developed eAxle for Toyota's bZ4X that uses a new SiC-based inverter with a flat double-sided cooling structure, cutting inverter power loss by about 70% and shrinking the core module by about 30% compared with its previous silicon products.

In September 2025, BorgWarner's IAA Mobility 2025 release showcased its "next-generation inverters and power electronics" delivering higher power density and improved thermal performance to enable more compact, efficient electric drive systems for future EV platforms.

Components Covered:

  • Power Module
  • Microcontroller Unit (MCU)
  • Gate Driver Board
  • DC-Link Capacitor
  • Current Sensor
  • Other Components

Design Types Covered:

  • Integrated Inverter System
  • Separate/Standalone Inverter System

Propulsion Types Covered:

  • Battery Electric Vehicle (BEV)
  • Plug-in Hybrid Electric Vehicle (PHEV)
  • Hybrid Electric Vehicle (HEV)
  • Fuel Cell Electric Vehicle (FCEV)

Vehicle Types Covered:

  • Passenger Cars
  • Light Commercial Vehicles (LCVs)
  • Heavy Commercial Vehicles (HCVs)
  • Buses and Coaches

Cooling Systems Covered:

  • Liquid Cooling
  • Air Cooling

Power Ratings Covered:

  • < 100 kW
  • 100 kW - 200 kW
  • 200 kW - 300 kW
  • > 300 kW

Distribution Channels Covered:

  • Original Equipment Manufacturer (OEM)
  • Aftermarket

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Emerging Markets
  • 3.7 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Electric Vehicle (EV) Traction Inverter Market, By Component

  • 5.1 Introduction
  • 5.2 Power Module
  • 5.3 Microcontroller Unit (MCU)
  • 5.4 Gate Driver Board
  • 5.5 DC-Link Capacitor
  • 5.6 Current Sensor
  • 5.7 Other Components

6 Global Electric Vehicle (EV) Traction Inverter Market, By Design Type

  • 6.1 Introduction
  • 6.2 Integrated Inverter System
  • 6.3 Separate/Standalone Inverter System

7 Global Electric Vehicle (EV) Traction Inverter Market, By Propulsion Type

  • 7.1 Introduction
  • 7.2 Battery Electric Vehicle (BEV)
  • 7.3 Plug-in Hybrid Electric Vehicle (PHEV)
  • 7.4 Hybrid Electric Vehicle (HEV)
  • 7.5 Fuel Cell Electric Vehicle (FCEV)

8 Global Electric Vehicle (EV) Traction Inverter Market, By Vehicle Type

  • 8.1 Introduction
  • 8.2 Passenger Cars
  • 8.3 Light Commercial Vehicles (LCVs)
  • 8.4 Heavy Commercial Vehicles (HCVs)
  • 8.5 Buses and Coaches

9 Global Electric Vehicle (EV) Traction Inverter Market, By Cooling System

  • 9.1 Introduction
  • 9.2 Liquid Cooling
  • 9.3 Air Cooling

10 Global Electric Vehicle (EV) Traction Inverter Market, By Power Rating

  • 10.1 Introduction
  • 10.2 < 100 kW
  • 10.3 100 kW - 200 kW
  • 10.4 200 kW - 300 kW
  • 10.5 > 300 kW

11 Global Electric Vehicle (EV) Traction Inverter Market, By Distribution Channel

  • 11.1 Introduction
  • 11.2 Original Equipment Manufacturer (OEM)
  • 11.3 Aftermarket

12 Global Electric Vehicle (EV) Traction Inverter Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Robert Bosch GmbH
  • 14.2 DENSO Corporation
  • 14.3 Hitachi Astemo Ltd.
  • 14.4 Continental AG
  • 14.5 Mitsubishi Electric Corporation
  • 14.6 Valeo SE
  • 14.7 Vitesco Technologies Group AG
  • 14.8 BorgWarner Inc.
  • 14.9 BYD Company Limited
  • 14.10 ZF Friedrichshafen AG
  • 14.11 Tesla, Inc.
  • 14.12 Nidec Corporation
  • 14.13 Inovance Automotive Technology Co., Ltd.
  • 14.14 Infineon Technologies AG
  • 14.15 NXP Semiconductors N.V.
  • 14.16 onsemi Corporation
  • 14.17 STMicroelectronics N.V.
  • 14.18 Lear Corporation

List of Tables

  • Table 1 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Power Module (2024-2032) ($MN)
  • Table 4 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Microcontroller Unit (MCU) (2024-2032) ($MN)
  • Table 5 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Gate Driver Board (2024-2032) ($MN)
  • Table 6 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By DC-Link Capacitor (2024-2032) ($MN)
  • Table 7 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Current Sensor (2024-2032) ($MN)
  • Table 8 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 9 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Design Type (2024-2032) ($MN)
  • Table 10 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Integrated Inverter System (2024-2032) ($MN)
  • Table 11 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Separate/Standalone Inverter System (2024-2032) ($MN)
  • Table 12 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Propulsion Type (2024-2032) ($MN)
  • Table 13 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Battery Electric Vehicle (BEV) (2024-2032) ($MN)
  • Table 14 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Plug-in Hybrid Electric Vehicle (PHEV) (2024-2032) ($MN)
  • Table 15 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Hybrid Electric Vehicle (HEV) (2024-2032) ($MN)
  • Table 16 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Fuel Cell Electric Vehicle (FCEV) (2024-2032) ($MN)
  • Table 17 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Vehicle Type (2024-2032) ($MN)
  • Table 18 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Passenger Cars (2024-2032) ($MN)
  • Table 19 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Light Commercial Vehicles (LCVs) (2024-2032) ($MN)
  • Table 20 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Heavy Commercial Vehicles (HCVs) (2024-2032) ($MN)
  • Table 21 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Buses and Coaches (2024-2032) ($MN)
  • Table 22 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Cooling System (2024-2032) ($MN)
  • Table 23 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Liquid Cooling (2024-2032) ($MN)
  • Table 24 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Air Cooling (2024-2032) ($MN)
  • Table 25 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Power Rating (2024-2032) ($MN)
  • Table 26 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By < 100 kW (2024-2032) ($MN)
  • Table 27 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By 100 kW - 200 kW (2024-2032) ($MN)
  • Table 28 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By 200 kW - 300 kW (2024-2032) ($MN)
  • Table 29 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By > 300 kW (2024-2032) ($MN)
  • Table 30 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Distribution Channel (2024-2032) ($MN)
  • Table 31 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Original Equipment Manufacturer (OEM) (2024-2032) ($MN)
  • Table 32 Global Electric Vehicle (EV) Traction Inverter Market Outlook, By Aftermarket (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.