封面
市場調查報告書
商品編碼
1880444

塑膠熱解市場預測至2032年:按原料類型、製程類型、反應器類型、產品產量、應用和地區分類的全球分析

Plastic Pyrolysis Market Forecasts to 2032 - Global Analysis By Feedstock Type, Process Type, Reactor Type, Product Output, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球塑膠熱解市場價值將達到 54 萬美元,到 2032 年將達到 105 萬美元。

預計在預測期內,塑膠熱解技術將以9.8%的複合年成長率成長。塑膠熱解是一種在高溫無氧條件下分解塑膠廢棄物的技術。在此過程中,複雜的塑膠聚合物被分解成熱解油、氣態燃料和固態殘渣等產品。它是一種有效減少塑膠污染、降低對傳統石油資源依賴以及生產再生能源材料的方法。作為循環經濟模式中的關鍵技術,塑膠熱解能夠促進永續的廢棄物處理,並推動從廢塑膠中回收資源。

向循環經濟轉型

各行各業和政府都在優先採用將塑膠廢棄物轉化為再生燃料和化學原料的技術。這項轉變的驅動力在於減少對掩埋的依賴並遏制環境污染。熱解技術能夠使塑膠廢棄物重新融入生產循環,有助於實現永續性目標。日益成長的監管壓力促使企業實施資源高效利用的解決方案,加速了工業界對該技術的採用。隨著企業專注於閉合迴路模式,塑膠熱解正成為循環廢棄物管理策略的核心要素。

原料品質和供應的不確定性

物料類型的多樣性,包括混合塑膠、受污染的廢棄物和多層包裝,會降低製程效率。這種異質性會帶來操作上的挑戰,可能導致油品產量下降和預處理成本增加。缺乏標準化的收集系統進一步加劇了原料供應穩定性的難題。人工智慧分類和先進的物料回收設施等技術正在被應用以應對這些挑戰。然而,原料的不可預測性仍是限制跨區域擴充性的關鍵因素。

技術進步和效率

先進的反應器設計、連續處理系統和改進的催化劑顯著提高了轉化率和產品品質。人工智慧驅動的製程最佳化實現了更穩定的生產和更低的能耗。與碳捕獲系統和可再生能源的結合進一步擴大了熱解的環境效益。這些進步吸引了尋求永續替代方案的石化和能源公司的投資。隨著效率的提高,熱解的成本競爭力日益大規模,並有望實現規模化商業性應用。

缺乏標準化和基礎設施

各國法規結構的差異阻礙了投資和長期規劃。塑膠廢棄物收集、預處理和運輸基礎設施的匱乏增加了加工的門檻。熱解油缺乏經認證的最終用途,造成了市場的不確定性。行業相關人員呼籲建立全球統一的認證體系,以提高市場接受度。如果監管不統一,基礎設施無法擴展,市場發展可能會面臨延誤和碎片化。

新冠疫情的影響:

新冠疫情對塑膠熱解產業產生了複雜的影響。供應鏈中斷暫時影響了原料供應和計劃進度。然而,醫療保健和包裝領域塑膠廢棄物產量的不斷成長凸顯了先進回收解決方案的迫切性。各國政府已開始加速推動永續性舉措,增強了對熱解技術的長期需求。企業也已轉向遠端營運、數位化監控和分散式處理模式。

預計在預測期內,連續熱解領域將佔據最大的市場佔有率。

由於運作效率高,連續熱解技術預計將在預測期內佔據最大的市場佔有率。與間歇式系統相比,連續式系統能夠實現穩定的處理、減少停機時間並確保產品產量的一致性。這些技術支援大規模廢棄物處理作業,因此對工業企業極具吸引力。自動化程度的提高和先進反應器的運用進一步提升了生產率和產量。尋求長期商業部署的企業正擴大採用連續式系統。

預計在預測期內,石化原料領域將實現最高的複合年成長率。

由於各行業為支持脫碳目標而擴大採用再生原料,預計石化原料領域在預測期內將實現最高成長率。熱解油可精煉成石腦油和其他塑膠生產的關鍵原料,進而促進循環生產流程。領先的石化公司正在投資大規模化學品回收合作項目,以確保原料的永續。強制性包裝和消費品再生材料含量等監管壓力進一步推動了需求。升級技術的進步正在提高煉油廠所需油品的品質。

佔比最大的地區:

由於塑膠廢棄物產生量龐大且政策支持力度強勁,亞太地區預計將在預測期內佔據最大的市場佔有率。中國、印度和日本等國家正在加快對化學回收基礎設施的投資。該地區正在應用熱解技術,以減少掩埋的依賴並提高能源回收。快速的工業化和不斷擴大的製造業支撐著對替代原料的持續需求。地方政府與全球技術供應商之間的策略夥伴關係正在鞏固市場地位。

複合年成長率最高的地區:

預計在預測期內,北美將實現最高的複合年成長率,這主要得益於日益完善的環境法規和強大的創新生態系統。聯邦和州政府的獎勵正在推動先進回收設施的快速擴張。廢棄物管理公司與石化公司之間的合作正在加速計劃開發。消費者和品牌對再生材料的需求不斷成長,推動了該地區的投資。催化熱解和石油提質技術的進步正在進一步促進這些技術的應用。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 主要參與者(最多3家公司)的SWOT分析
  • 區域細分
    • 根據客戶要求,對主要國家的市場規模和複合年成長率進行估算和預測(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要參與者的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 二手研究資料
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球塑膠熱解市場(按原始類型分類)

  • 介紹
  • 聚乙烯(低密度聚乙烯/高密度聚乙烯)
  • 聚丙烯(PP)
  • 聚苯乙烯(PS)
  • 寵物
  • PVC
  • 混合塑膠廢棄物
  • 工業塑膠廢棄物

6. 全球塑膠熱解市場(依工藝類型分類)

  • 介紹
  • 間歇式熱解
  • 半間歇式熱解
  • 連續熱解

7. 全球塑膠熱解市場(依反應器類型分類)

  • 介紹
  • 固定台反應器
  • 流體化床反應器
  • 迴轉窯反應器
  • 螺旋/螺旋鑽反應器
  • 真空熱解裝置

8. 全球塑膠熱解市場(依產品產量分類)

  • 介紹
  • 熱解油
  • 熱解解氣
  • 木炭/固態殘渣
  • 化工原料/單體

9. 全球塑膠熱解市場(按應用領域分類)

  • 介紹
  • 燃料
  • 石油化學原料
  • 電力和熱力生產
  • 道路施工材料
  • 炭黑/活性碳
  • 其他用途

10. 全球塑膠熱解市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲國家
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章:企業概況

  • Plastic Energy
  • Vadxx Energy
  • Agilyx
  • Green Envirotec
  • Brightmark
  • Axens
  • Recycling Technologies
  • Shell
  • Nexus Circular
  • ExxonMobil
  • RES Polyflow
  • LyondellBasell
  • Klean Industries
  • Plastic2Oil
  • Renewlogy
Product Code: SMRC32584

According to Stratistics MRC, the Global Plastic Pyrolysis Market is accounted for $0.54 million in 2025 and is expected to reach $1.05 million by 2032 growing at a CAGR of 9.8% during the forecast period. Plastic pyrolysis involves breaking down plastic waste using high temperatures without allowing oxygen to enter the system. During this process, complex plastic polymers degrade into products like pyrolysis oil, gaseous fuel, and solid residue. It serves as an effective method to minimize plastic pollution, decrease reliance on conventional petroleum sources, and generate reusable energy materials. As a key technology in circular economy models, plastic pyrolysis enhances sustainable waste handling and promotes resource recovery from discarded plastics.

Market Dynamics:

Driver:

Shift towards a circular economy

Industries and governments are prioritizing technologies that convert plastic waste into reusable fuels and chemical feedstocks. This shift is motivated by the need to reduce landfill dependency and lower environmental pollution. Pyrolysis enables the reintegration of plastic waste into production cycles, supporting sustainability goals. Growing regulatory pressure to adopt resource-efficient solutions is accelerating industry adoption. As companies emphasize closed-loop models, plastic pyrolysis is becoming a central component of circular waste management strategies.

Restraint:

Inconsistent feedstock quality and availability

Variations in material types such as mixed plastics, contaminated waste, and multilayer packaging reduce process efficiency. These inconsistencies create operational challenges, sometimes lowering oil yield and increasing pre-processing costs. The lack of standardized collection systems further complicates stable feedstock availability. Technologies like AI-enabled sorting and advanced material recovery facilities are being adopted to mitigate these issues. However, feedstock unpredictability remains a key factor limiting scalability across regions.

Opportunity:

Technological advancements and efficiency

Advanced reactor designs, continuous processing systems, and catalytic enhancements are significantly improving conversion rates and product quality. AI-driven process optimization is enabling more consistent outputs and reduced energy consumption. Integration with carbon capture systems and renewable energy inputs is expanding the environmental benefits of pyrolysis. These advancements are attracting investment from petrochemical and energy companies seeking sustainable alternatives. As efficiency improves, pyrolysis is becoming more cost-competitive and commercially viable on a large scale.

Threat:

Lack of standardization and infrastructure

Inconsistent regulatory frameworks across countries hinder investment and long-term planning. Limited infrastructure for collecting, preprocessing, and transporting plastic waste increases processing barriers. The lack of certified end-use applications for pyrolysis oil creates market uncertainty. Industry players are calling for globally aligned certification systems to improve market acceptance. Without coordinated regulations and infrastructure expansion, market deployment may face delays and fragmentation.

Covid-19 Impact:

The COVID-19 pandemic had mixed effects on the plastic pyrolysis industry. Supply chain disruptions temporarily impacted feedstock flows and project timelines. However, rising plastic waste generation from medical and packaging applications highlighted the urgent need for advanced recycling solutions. Governments began accelerating sustainability initiatives, strengthening long-term demand for pyrolysis technologies. Companies shifted toward remote operations, digital monitoring, and decentralized processing models.

The continuous pyrolysis segment is expected to be the largest during the forecast period

The continuous pyrolysis segment is expected to account for the largest market share during the forecast period, due to its high operational efficiency. Continuous systems enable stable processing, reduced downtime, and consistent product output compared to batch systems. These technologies support large-scale waste management operations, making them highly attractive for industrial players. Improved automation and advanced reactors further enhance productivity and yield. Adoption of continuous systems is rising among companies aiming for long-term commercial deployment.

The petrochemical feedstock segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the petrochemical feedstock segment is predicted to witness the highest growth rate, as industries increasingly adopt recycled feedstock to support decarbonization goals. Pyrolysis oil can be refined into naphtha and other key inputs for plastics production, encouraging circular manufacturing practices. Major petrochemical companies are investing in large-scale chemical recycling partnerships to secure sustainable raw materials. Demand is further driven by regulatory pressure to include recycled content in packaging and consumer goods. Advancements in upgrading technologies are improving oil quality for refinery use.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to its massive plastic waste generation and strong policy support. Countries such as China, India, and Japan are accelerating investments in chemical recycling infrastructure. The region is adopting pyrolysis to reduce landfill dependence and enhance energy recovery. Rapid industrialization and expanding manufacturing sectors contribute to sustained demand for alternative feedstocks. Strategic collaborations between local governments and global technology providers are strengthening the market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, supported by rising environmental regulations and strong innovation ecosystems. The region is witnessing rapid expansion of advanced recycling facilities backed by federal and state incentives. Partnerships between waste management firms and petrochemical companies are accelerating project development. Consumers and brands are increasingly demanding recycled content, boosting regional investment. Technological advancements in catalytic pyrolysis and oil upgrading are further driving adoption.

Key players in the market

Some of the key players in Plastic Pyrolysis Market include Plastic Ene, Vadxx Ene, Agilyx, Green Env, Brightmar, Axens, Recycling T, Shell, Nexus Circ, ExxonMob, RES Polyfl, LyondellB, Klean Indu, Plastic2O, and Renewlog.

Key Developments:

In November 2025, LyondellBasell (LYB) and Nippon Paint China, a leading paint manufacturer and service provider, have jointly launched their first collaboration to help close the loop for coating packaging barrels. The announcement was made at the China International Import Expo (CIIE) in November.

In April 2025, Exxon Mobil Corporation announced an agreement with Calpine Corporation, the nation's largest producer of electricity from natural gas, to transport and permanently store up to 2 million metric tons per annum (MTA) of CO2 from Calpine's Baytown Energy Center, a cogeneration facility near Houston. This is part of Calpine's Baytown Carbon Capture and Storage (CCS) Project that is designed to capture the facility's CO2 emissions.

Feedstock Types Covered:

  • Polyethylene (LDPE & HDPE)
  • Polypropylene (PP)
  • Polystyrene (PS)
  • PET
  • PVC
  • Mixed Plastic Waste
  • Industrial Plastic Waste

Process Types Covered:

  • Batch Pyrolysis
  • Semi-Batch Pyrolysis
  • Continuous Pyrolysis

Reactor Types Covered:

  • Fixed-Bed Reactor
  • Fluidized-Bed Reactor
  • Rotary Kiln Reactor
  • Screw/Auger Reactor
  • Vacuum Pyrolysis Unit

Product Outputs Covered:

  • Pyrolysis Oil
  • Pyrolysis Gas
  • Char / Solid Residue
  • Waxes
  • Chemical Feedstock/Monomers

Applications Covered:

  • Fuels
  • Petrochemical Feedstock
  • Electricity & Heat Generation
  • Road Construction Material
  • Carbon Black/Activated Carbon
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Plastic Pyrolysis Market, By Feedstock Type

  • 5.1 Introduction
  • 5.2 Polyethylene (LDPE & HDPE)
  • 5.3 Polypropylene (PP)
  • 5.4 Polystyrene (PS)
  • 5.5 PET
  • 5.6 PVC
  • 5.7 Mixed Plastic Waste
  • 5.8 Industrial Plastic Waste

6 Global Plastic Pyrolysis Market, By Process Type

  • 6.1 Introduction
  • 6.2 Batch Pyrolysis
  • 6.3 Semi-Batch Pyrolysis
  • 6.4 Continuous Pyrolysis

7 Global Plastic Pyrolysis Market, By Reactor Type

  • 7.1 Introduction
  • 7.2 Fixed-Bed Reactor
  • 7.3 Fluidized-Bed Reactor
  • 7.4 Rotary Kiln Reactor
  • 7.5 Screw/Auger Reactor
  • 7.6 Vacuum Pyrolysis Unit

8 Global Plastic Pyrolysis Market, By Product Output

  • 8.1 Introduction
  • 8.2 Pyrolysis Oil
  • 8.3 Pyrolysis Gas
  • 8.4 Char / Solid Residue
  • 8.5 Waxes
  • 8.6 Chemical Feedstock/Monomers

9 Global Plastic Pyrolysis Market, By Application

  • 9.1 Introduction
  • 9.2 Fuels
  • 9.3 Petrochemical Feedstock
  • 9.4 Electricity & Heat Generation
  • 9.5 Road Construction Material
  • 9.6 Carbon Black/Activated Carbon
  • 9.7 Other Applications

10 Global Plastic Pyrolysis Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Plastic Energy
  • 12.2 Vadxx Energy
  • 12.3 Agilyx
  • 12.4 Green Envirotec
  • 12.5 Brightmark
  • 12.6 Axens
  • 12.7 Recycling Technologies
  • 12.8 Shell
  • 12.9 Nexus Circular
  • 12.10 ExxonMobil
  • 12.11 RES Polyflow
  • 12.12 LyondellBasell
  • 12.13 Klean Industries
  • 12.14 Plastic2Oil
  • 12.15 Renewlogy

List of Tables

  • Table 1 Global Plastic Pyrolysis Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Plastic Pyrolysis Market Outlook, By Feedstock Type (2024-2032) ($MN)
  • Table 3 Global Plastic Pyrolysis Market Outlook, By Polyethylene (LDPE & HDPE) (2024-2032) ($MN)
  • Table 4 Global Plastic Pyrolysis Market Outlook, By Polypropylene (PP) (2024-2032) ($MN)
  • Table 5 Global Plastic Pyrolysis Market Outlook, By Polystyrene (PS) (2024-2032) ($MN)
  • Table 6 Global Plastic Pyrolysis Market Outlook, By PET (2024-2032) ($MN)
  • Table 7 Global Plastic Pyrolysis Market Outlook, By PVC (2024-2032) ($MN)
  • Table 8 Global Plastic Pyrolysis Market Outlook, By Mixed Plastic Waste (2024-2032) ($MN)
  • Table 9 Global Plastic Pyrolysis Market Outlook, By Industrial Plastic Waste (2024-2032) ($MN)
  • Table 10 Global Plastic Pyrolysis Market Outlook, By Process Type (2024-2032) ($MN)
  • Table 11 Global Plastic Pyrolysis Market Outlook, By Batch Pyrolysis (2024-2032) ($MN)
  • Table 12 Global Plastic Pyrolysis Market Outlook, By Semi-Batch Pyrolysis (2024-2032) ($MN)
  • Table 13 Global Plastic Pyrolysis Market Outlook, By Continuous Pyrolysis (2024-2032) ($MN)
  • Table 14 Global Plastic Pyrolysis Market Outlook, By Reactor Type (2024-2032) ($MN)
  • Table 15 Global Plastic Pyrolysis Market Outlook, By Fixed-Bed Reactor (2024-2032) ($MN)
  • Table 16 Global Plastic Pyrolysis Market Outlook, By Fluidized-Bed Reactor (2024-2032) ($MN)
  • Table 17 Global Plastic Pyrolysis Market Outlook, By Rotary Kiln Reactor (2024-2032) ($MN)
  • Table 18 Global Plastic Pyrolysis Market Outlook, By Screw/Auger Reactor (2024-2032) ($MN)
  • Table 19 Global Plastic Pyrolysis Market Outlook, By Vacuum Pyrolysis Unit (2024-2032) ($MN)
  • Table 20 Global Plastic Pyrolysis Market Outlook, By Product Output (2024-2032) ($MN)
  • Table 21 Global Plastic Pyrolysis Market Outlook, By Pyrolysis Oil (2024-2032) ($MN)
  • Table 22 Global Plastic Pyrolysis Market Outlook, By Pyrolysis Gas (2024-2032) ($MN)
  • Table 23 Global Plastic Pyrolysis Market Outlook, By Char / Solid Residue (2024-2032) ($MN)
  • Table 24 Global Plastic Pyrolysis Market Outlook, By Waxes (2024-2032) ($MN)
  • Table 25 Global Plastic Pyrolysis Market Outlook, By Chemical Feedstock/Monomers (2024-2032) ($MN)
  • Table 26 Global Plastic Pyrolysis Market Outlook, By Application (2024-2032) ($MN)
  • Table 27 Global Plastic Pyrolysis Market Outlook, By Fuels (2024-2032) ($MN)
  • Table 28 Global Plastic Pyrolysis Market Outlook, By Petrochemical Feedstock (2024-2032) ($MN)
  • Table 29 Global Plastic Pyrolysis Market Outlook, By Electricity & Heat Generation (2024-2032) ($MN)
  • Table 30 Global Plastic Pyrolysis Market Outlook, By Road Construction Material (2024-2032) ($MN)
  • Table 31 Global Plastic Pyrolysis Market Outlook, By Carbon Black/Activated Carbon (2024-2032) ($MN)
  • Table 32 Global Plastic Pyrolysis Market Outlook, By Other Applications (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.