封面
市場調查報告書
商品編碼
1876669

量化交易平台市場預測至2032年:按策略類型、技術、應用、最終用戶和地區分類的全球分析

Quant-Trade Platforms Market Forecasts to 2032 - Global Analysis By Strategy Type, Technology, Application, End User, and By Geography.

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球量化交易平台市場規模將達到 22 億美元,到 2032 年將達到 38 億美元,預測期內複合年成長率為 8.1%。

量化交易平台是利用量化演算法和統計模型執行投資策略的自動化金融交易系統。它們分析大規模資料集,以識別模式、預測價格走勢並最佳化投資組合表現。這些平台支援多種資產類別,包括股票、外匯和加密貨幣。它們利用人工智慧、機器學習和即時分析技術,實現快速、數據驅動的決策,並減少金融交易環境中的人為偏見。

根據摩根大通的一項調查,超過 60% 的機構投資者現在使用另類數據和量化策略,這推動了對易於使用的演算法交易基礎設施的需求。

演算法交易的激增

演算法交易策略的日益普及是推動量化交易平台市場發展的主要因素。演算法交易基於預設規則自動執行交易,實現高速、高頻交易,從而提高市場效率並減少人為錯誤。這一趨勢得益於運算能力、數據分析技術和市場進入的進步,使交易者能夠持續掌握多個市場中微小的價格波動。因此,全球對支援無縫演算法部署的先進量化平台的需求日益成長。

高昂的基礎設施和延遲成本

高昂的基礎設施成本,包括對尖端伺服器、低延遲網路以及接近性資料中心的需求,限制了市場成長。雖然降低延遲對於在高頻交易中獲得競爭優勢至關重要,但必要的投資可能成為中小企業的障礙。維護和升級這些基礎設施需要大量支出,限制了其可及性,並設定了准入門檻,儘管技術不斷進步,但仍難以實現廣泛應用。

整合基於人工智慧的交易引擎

將人工智慧和機器學習技術整合到量化交易平台中蘊藏著巨大的成長機會。基於人工智慧的引擎利用巨量資料和即時市場洞察,提升預測準確度、風險管理能力和交易策略最佳化水準。這些技術支援自適應決策和持續學習,使交易員能夠快速應對市場變化並發現新的套利機會。金融機構和避險基金對人工智慧驅動的自動化技術的日益普及,正在推動對具備人工智慧功能的高階量化平台的需求。

市場波動與系統性風險

市場波動和系統性風險對量化交易平台市場構成重大威脅。高頻交易和演算法交易加劇了市場波動,並可能導致閃崩和其他市場動盪。監管機構正在加強審查,並對演算法交易行為實施更嚴格的管控。意外的市場波動、網路風險或演算法故障都可能造成重大經濟損失、投資者不信任以及監管處罰,這給平台營運商帶來了挑戰,迫使其確保穩健的風險管理和合規性。

新冠疫情的影響:

新冠疫情加劇了市場波動,導致量化交易平台(尤其是高頻交易平台)的交易活動和利潤激增。遠距辦公的廣泛普及加速了雲端基礎交易系統和數位基礎設施的採用。儘管部分業務最初受到影響,但總體而言,疫情凸顯了自動化交易解決方案在即時回應和風險管理方面的重要性,從而刺激了平台領域的投資和創新。

預計在預測期內,高頻交易板塊將佔據最大的市場佔有率。

由於高頻交易(HFT)在機構投資者中廣泛應用,預計在預測期內,高頻交易領域將佔據最大的市場佔有率。機構投資者可以透過高交易量獲得小規模但穩定的利潤。高頻交易對速度和自動化的依賴,使其能夠很好地應對日益複雜的市場和激烈的競爭壓力,這也使得該領域成為推動對具有超低延遲和先進執行能力的量化交易平台需求的主要動力。

預計在預測期內,雲端基礎的回測引擎細分市場將呈現最高的複合年成長率。

受可擴展、按需運算資源需求不斷成長的推動,預計雲端基礎回測引擎領域在預測期內將實現最高成長率。雲端解決方案提供了一個靈活且經濟高效的環境,無需對內部基礎設施進行大量投資即可運行複雜的模擬模型並檢驗交易策略。增強的協作能力、數據可用性和快速原型製作能力正在加速避險基金和金融科技公司採用雲端解決方案,以期快速最佳化其策略。

佔比最大的地區:

由於中國、日本、韓國和印度等國的數位化加快、金融市場蓬勃發展以及機構投資者參與度不斷提高,預計亞太地區將在預測期內佔據最大的市場佔有率。政府支持金融科技創新的舉措、網際網路普及率的提高以及新興經濟體對自動化交易解決方案需求的成長,都在推動區域市場擴張,使亞太地區成為量化交易平台發展的關鍵樞紐。

年複合成長率最高的地區:

在預測期內,北美預計將實現最高的複合年成長率,這與其成熟的金融市場、大型避險基金和投資公司的集中以及人工智慧和雲端運算技術的廣泛應用密切相關。強而有力的法規結構促進了市場透明度和安全性,加上私部門對金融科技研發的投資,正在推動美國和加拿大持續創新,並不斷提升對先進量化交易平台的需求。

免費客製化服務:

購買此報告的客戶可以選擇以下免費自訂選項之一:

  • 公司概況
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 主要參與者(最多3家公司)的SWOT分析
  • 區域細分
    • 根據客戶要求,對主要國家的市場規模和複合年成長率進行估算和預測(註:可行性需確認)。
  • 競爭基準化分析
    • 根據主要參與者的產品系列、地理覆蓋範圍和策略聯盟基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 二手研究資料
    • 先決條件

第3章 市場趨勢分析

  • 介紹
  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球量化交易平台市場(依策略類型分類)

  • 介紹
  • 高頻交易策略
  • 演算法動量策略
  • 統計套利
  • 機器學習驅動模型
  • 選擇權和衍生性商品演算法
  • 多資產量化策略

6. 全球量化交易平台市場(依技術分類)

  • 介紹
  • 雲端基礎的回測引擎
  • 人工智慧驅動的交易模型
  • API 連接框架
  • 基於區塊鏈的支付
  • 低延遲基礎設施
  • 資料湖和預測分析

7. 全球量化交易平台市場(按應用分類)

  • 介紹
  • 股票交易
  • 加密貨幣交易
  • 外匯及商品
  • ETF/指數型基金策略
  • 風險套利投資組合
  • 衍生性商品和期貨

8. 全球量化交易平台市場(依最終用戶分類)

  • 介紹
  • 避險基金
  • 投資銀行
  • 資產管理公司
  • 自營交易台
  • 金融科技Start-Ups
  • 機構投資者

9. 全球量化交易平台市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第11章 企業概況

  • Numerix
  • QuantConnect
  • Quantopian
  • Two Sigma Investments
  • DE Shaw & Co.
  • Jane Street
  • Citadel LLC
  • AQR Capital Management
  • Renaissance Technologies
  • Susquehanna International Group
  • WorldQuant
  • Millennium Management
  • Hudson River Trading
  • IMC Trading
  • DRW Trading
  • Goldman Sachs
  • JPMorgan Chase
Product Code: SMRC32352

According to Stratistics MRC, the Global Quant-Trade Platforms Market is accounted for $2.2 billion in 2025 and is expected to reach $3.8 billion by 2032 growing at a CAGR of 8.1% during the forecast period. Quant-Trade Platforms are automated financial trading systems that execute investment strategies using quantitative algorithms and statistical models. They analyze large datasets to identify patterns, predict price movements, and optimize portfolio performance. These platforms support multiple asset classes such as equities, forex, and cryptocurrencies. Utilizing AI, machine learning, and real-time analytics, they enable high-speed, data-driven decision-making and reduce human bias in financial trading environments.

According to a J.P. Morgan survey, over 60% of institutional investors now use alternative data and quantitative strategies, increasing demand for accessible algorithmic trading infrastructure.

Market Dynamics:

Driver:

Surging adoption of algorithmic trading

The increasing use of algorithmic trading strategies is a major driver for the quant-trade platforms market. Algorithmic trading automates trade execution based on predefined rules, allowing rapid, high-volume transactions that improve market efficiency and reduce human error. This trend is fueled by advances in computing power, data analytics, and market access, enabling traders to capitalize on small price movements across multiple markets continuously. Consequently, demand for sophisticated quant platforms supporting seamless algorithm deployment is rising globally.

Restraint:

High infrastructure and latency costs

High infrastructure costs, including the need for cutting-edge servers, low-latency networks, and data center proximity, constrain market growth. Reducing latency is critical for gaining competitive advantages in high-frequency trading, but the investments required can be prohibitive for smaller firms. Maintaining and upgrading this infrastructure involves substantial expenditure, limiting accessibility and creating barriers to entry, thereby slowing broader adoption despite technological advances.

Opportunity:

Integration of AI-based trading engines

Integrating AI and machine learning with quant-trade platforms offers significant growth opportunities. AI-based engines enhance predictive accuracy, risk management, and trade strategy optimization by leveraging big data and real-time market insights. These technologies support adaptive decision-making and continuous learning, enabling traders to respond swiftly to market changes and uncover new arbitrage opportunities. Growing adoption of AI-driven automation across financial institutions and hedge funds is driving demand for advanced quant platforms with AI capabilities.

Threat:

Market volatility and systemic risks

Market volatility and systemic risks present substantial threats to the quant-trade platforms market. High-frequency and algorithmic trading can exacerbate volatility, lead to flash crashes, or trigger market disruptions. Regulatory scrutiny is increasing, imposing stricter controls on algorithmic trading practices. Unforeseen market shifts, cyber risks, or flawed algorithms may cause significant financial losses, investor distrust, and regulatory penalties, challenging platform operators to ensure robust risk controls and compliance.

Covid-19 Impact:

The Covid-19 pandemic intensified market volatility, leading to a surge in trading activity and profits for quant-trade platforms, especially in high-frequency segments. Remote work accelerated the adoption of cloud-based trading systems and digital infrastructure. Although initial disruptions affected some operations, overall, the pandemic underscored the importance of automated trading solutions for real-time responsiveness and risk management, boosting platform investment and innovation.

The high-frequency trading segment is expected to be the largest during the forecast period

The high-frequency trading (HFT) segment is expected to account for the largest market share during the forecast period, resulting from its widespread use among institutional investors to derive small but consistent profits from large volumes of trades. HFT's reliance on speed and automation fits well with growing market complexity and competitive pressures, making this segment a dominant force driving demand for quant-trade platforms with ultra-low latency and advanced execution capabilities.

The cloud-based backtesting engines segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cloud-based backtesting engines segment is predicted to witness the highest growth rate, propelled by increasing preference for scalable, on-demand computing resources. Cloud solutions offer flexible, cost-efficient environments for running complex simulation models and validating trade strategies without investing heavily in in-house infrastructure. Enhanced collaboration, data availability, and rapid prototyping capabilities accelerate adoption among hedge funds and fintech firms aiming for agile strategy refinement.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to rapid digitization, growing financial markets, and increasing institutional participation across China, Japan, South Korea, and India. Government initiatives supporting fintech innovation, increasing internet penetration, and rising demand for automated trading solutions in emerging economies drive regional market expansion, establishing Asia Pacific as a critical hub for quant-trade platform growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR linked to its mature financial markets, concentration of leading hedge funds and investment firms, and extensive adoption of AI and cloud technologies. Strong regulatory frameworks promoting market transparency and security, combined with private-sector investments in fintech R&D, foster continuous innovation and increase demand for sophisticated quant-trade platforms in the United States and Canada.

Key players in the market

Some of the key players in Quant-Trade Platforms Market include Numerix, QuantConnect, Quantopian, Two Sigma Investments, DE Shaw & Co., Jane Street, Citadel LLC, AQR Capital Management, Renaissance Technologies, Susquehanna International Group, WorldQuant, Millennium Management, Hudson River Trading, IMC Trading, DRW Trading, Goldman Sachs and JPMorgan Chase.

Key Developments:

In October 2025, Goldman Sachs unveiled its GS Quant API Suite, a new set of developer tools that allows institutional clients to directly integrate the firm's proprietary pricing models and market data into their own automated trading strategies.

In September 2025, QuantConnect announced the general availability of its LEAN Engine v3, featuring native support for machine learning models and unstructured data analysis, dramatically reducing the backtesting time for complex quantitative strategies.

In August 2025, Two Sigma Investments spun out its Spectrum Platform as a standalone SaaS offering, providing hedge funds with secure, sandboxed access to a curated set of its data science and signal-generation tools.

Strategy Types Covered:

  • High-Frequency Trading Strategies
  • Algorithmic Momentum Strategies
  • Statistical Arbitrage
  • Machine Learning-Driven Models
  • Options & Derivatives Algorithms
  • Multi-Asset Quant Strategies

Technologies Covered:

  • Cloud-Based Backtesting Engines
  • AI-Powered Trading Models
  • API Connectivity Frameworks
  • Blockchain-Based Settlement
  • Low-Latency Infrastructure
  • Data Lake & Predictive Analytics

Applications Covered:

  • Equity Trading
  • Crypto Asset Trading
  • Forex & Commodities
  • ETF & Index Fund Strategies
  • Risk Hedging Portfolios
  • Derivatives & Futures

End Users Covered:

  • Hedge Funds
  • Investment Banks
  • Asset Management Firms
  • Prop Trading Desks
  • Fintech Startups
  • Institutional Traders

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Quant-Trade Platforms Market, By Strategy Type

  • 5.1 Introduction
  • 5.2 High-Frequency Trading Strategies
  • 5.3 Algorithmic Momentum Strategies
  • 5.4 Statistical Arbitrage
  • 5.5 Machine Learning-Driven Models
  • 5.6 Options & Derivatives Algorithms
  • 5.7 Multi-Asset Quant Strategies

6 Global Quant-Trade Platforms Market, By Technology

  • 6.1 Introduction
  • 6.2 Cloud-Based Backtesting Engines
  • 6.3 AI-Powered Trading Models
  • 6.4 API Connectivity Frameworks
  • 6.5 Blockchain-Based Settlement
  • 6.6 Low-Latency Infrastructure
  • 6.7 Data Lake & Predictive Analytics

7 Global Quant-Trade Platforms Market, By Application

  • 7.1 Introduction
  • 7.2 Equity Trading
  • 7.3 Crypto Asset Trading
  • 7.4 Forex & Commodities
  • 7.5 ETF & Index Fund Strategies
  • 7.6 Risk Hedging Portfolios
  • 7.7 Derivatives & Futures

8 Global Quant-Trade Platforms Market, By End User

  • 8.1 Introduction
  • 8.2 Hedge Funds
  • 8.3 Investment Banks
  • 8.4 Asset Management Firms
  • 8.5 Prop Trading Desks
  • 8.6 Fintech Startups
  • 8.7 Institutional Traders

9 Global Quant-Trade Platforms Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Numerix
  • 11.2 QuantConnect
  • 11.3 Quantopian
  • 11.4 Two Sigma Investments
  • 11.5 DE Shaw & Co.
  • 11.6 Jane Street
  • 11.7 Citadel LLC
  • 11.8 AQR Capital Management
  • 11.9 Renaissance Technologies
  • 11.10 Susquehanna International Group
  • 11.11 WorldQuant
  • 11.12 Millennium Management
  • 11.13 Hudson River Trading
  • 11.14 IMC Trading
  • 11.15 DRW Trading
  • 11.16 Goldman Sachs
  • 11.17 JPMorgan Chase

List of Tables

  • Table 1 Global Quant-Trade Platforms Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Quant-Trade Platforms Market Outlook, By Strategy Type (2024-2032) ($MN)
  • Table 3 Global Quant-Trade Platforms Market Outlook, By High-Frequency Trading Strategies (2024-2032) ($MN)
  • Table 4 Global Quant-Trade Platforms Market Outlook, By Algorithmic Momentum Strategies (2024-2032) ($MN)
  • Table 5 Global Quant-Trade Platforms Market Outlook, By Statistical Arbitrage (2024-2032) ($MN)
  • Table 6 Global Quant-Trade Platforms Market Outlook, By Machine Learning-Driven Models (2024-2032) ($MN)
  • Table 7 Global Quant-Trade Platforms Market Outlook, By Options & Derivatives Algorithms (2024-2032) ($MN)
  • Table 8 Global Quant-Trade Platforms Market Outlook, By Multi-Asset Quant Strategies (2024-2032) ($MN)
  • Table 9 Global Quant-Trade Platforms Market Outlook, By Technology (2024-2032) ($MN)
  • Table 10 Global Quant-Trade Platforms Market Outlook, By Cloud-Based Backtesting Engines (2024-2032) ($MN)
  • Table 11 Global Quant-Trade Platforms Market Outlook, By AI-Powered Trading Models (2024-2032) ($MN)
  • Table 12 Global Quant-Trade Platforms Market Outlook, By API Connectivity Frameworks (2024-2032) ($MN)
  • Table 13 Global Quant-Trade Platforms Market Outlook, By Blockchain-Based Settlement (2024-2032) ($MN)
  • Table 14 Global Quant-Trade Platforms Market Outlook, By Low-Latency Infrastructure (2024-2032) ($MN)
  • Table 15 Global Quant-Trade Platforms Market Outlook, By Data Lake & Predictive Analytics (2024-2032) ($MN)
  • Table 16 Global Quant-Trade Platforms Market Outlook, By Application (2024-2032) ($MN)
  • Table 17 Global Quant-Trade Platforms Market Outlook, By Equity Trading (2024-2032) ($MN)
  • Table 18 Global Quant-Trade Platforms Market Outlook, By Crypto Asset Trading (2024-2032) ($MN)
  • Table 19 Global Quant-Trade Platforms Market Outlook, By Forex & Commodities (2024-2032) ($MN)
  • Table 20 Global Quant-Trade Platforms Market Outlook, By ETF & Index Fund Strategies (2024-2032) ($MN)
  • Table 21 Global Quant-Trade Platforms Market Outlook, By Risk Hedging Portfolios (2024-2032) ($MN)
  • Table 22 Global Quant-Trade Platforms Market Outlook, By Derivatives & Futures (2024-2032) ($MN)
  • Table 23 Global Quant-Trade Platforms Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Quant-Trade Platforms Market Outlook, By Hedge Funds (2024-2032) ($MN)
  • Table 25 Global Quant-Trade Platforms Market Outlook, By Investment Banks (2024-2032) ($MN)
  • Table 26 Global Quant-Trade Platforms Market Outlook, By Asset Management Firms (2024-2032) ($MN)
  • Table 27 Global Quant-Trade Platforms Market Outlook, By Prop Trading Desks (2024-2032) ($MN)
  • Table 28 Global Quant-Trade Platforms Market Outlook, By Fintech Startups (2024-2032) ($MN)
  • Table 29 Global Quant-Trade Platforms Market Outlook, By Institutional Traders (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.