封面
市場調查報告書
商品編碼
1871908

全球電動汽車電池回收市場:預測至2032年-依化學成分、電池來源、回收流程、回收階段、最終用戶及地區進行分析

Electric Vehicle Battery Recycling Market Forecasts to 2032 - Global Analysis By Chemistry, Battery Source, Recycling Process, Recycling Stage, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,全球電動車 (EV) 電池回收市場預計在 2025 年達到 6.1981 億美元,預計到 2032 年將達到 26.7017 億美元,在預測期內的複合年成長率為 23.2%。

電動汽車電池回收是指從廢棄電動汽車電池中回收和再利用材料的過程。這包括收集、拆解和材料回收等步驟,旨在回收鋰、鈷和鎳等關鍵元素。該過程旨在減少對環境的負面影響,節省關鍵原料,並促進永續性。將回收材料重新投入生產線,有助於循環經濟的發展,並減少對原生資源開採的依賴。

根據相關規定,鎳鎘電池、鉛酸電池和其他化學電池的重量分別應有約 75.0%、65.0% 和 50% 回收為再生材料。

關鍵資源的經濟價值

隨著電動車的日益普及,從廢棄電池中回收鋰、鈷、鎳等關鍵金屬的需求也迅速成長。這些材料是先進電池製造的必需品,但其稀缺性和價格卻日益高昂。回收利用為回收這些原料提供了一種策略性解決方案,有助於減少對不穩定的全球供應鏈的依賴。直接回收和濕式冶金技術的創新正在提高提取效率和材料品質。回收高價值材料所帶來的經濟和環境效益正在推動電池回收基礎設施的投資。

技術複雜性和異質性

鋰離子電池的不同結構—磷酸鐵鋰(LFP)、鎳鈷錳酸鋰(NMC)和鎳鈷鋁酸鋰(NCA)—需要客製化的拆解和處理流程。人工拆解既危險又低效,尤其是在電池內部整合電子元件和高壓組件的情況下。自動化技術仍在發展中,難以適應非標準化的電池組。此外,黏合劑、冷卻系統和整合感測器等也會阻礙材料分離,進一步增加了拆解的複雜性。這些技術難題推高了營運成本,並延緩了可擴展回收解決方案的普及。

建立閉合迴路供應鏈

汽車製造商和回收商正在攜手合作,以確保再生原料的供應並減少碳排放。陰極直接再利用和智慧分類技術的突破性進展,使得高效的材料回收成為可能。電池護照和區塊鏈等數位化工具,有助於提升整個回收鏈的可追溯性和合規性。歐盟和中國等地區的監管要求,透過生產者延伸責任制,正在加速循環經濟模式的推廣。這些趨勢正在推動逆向物流、二次電池應用以及區域回收中心等領域的創新。

新原物料價格波動

原生鋰、鈷和鎳的價格波動威脅再生替代品的競爭力。原物料成本下降可能導致回收業務在經濟上不可行,並抑制投資。這種波動使長期規劃複雜化,延緩了先進回收技術的應用。它還會影響合約談判和新設施的資金籌措。一些公司正在探索價格穩定機制和長期採購協議以降低風險。然而,如果沒有持續的政策支持或強制使用再生材料的規定,市場仍然容易受到大宗商品價格波動的影響。

新冠疫情的感染疾病:

新冠疫情擾亂了全球電池供應鏈,導致回收延誤,廢棄電池供應受限。勞動力短缺和封鎖措施影響了回收和處理作業,造成了暫時的延誤。然而,這場危機加速了人工智慧診斷和遠端監控系統等數位化工具的應用。疫情也凸顯了建構具有韌性的分散式回收基礎設施的重要性,以降低對進口的依賴。後疫情時代的策略重點在於自動化、本地採購和監管協調,以加強回收生態系統。

預計在預測期內,鋰離子電池細分市場將佔據最大的市場佔有率。

由於鋰離子電池在電動車和能源儲存系統中的廣泛應用,預計在預測期內,鋰離子電池將佔據最大的市場佔有率。這些電池含有高濃度的貴金屬,使其成為理想的回收對象。濕式冶金製程和直接回收技術的進步正在提高萃取率並減少對環境的影響。不斷成長的電動車保有量為廢棄電池提供了穩定的來源,從而推動了對回收的需求。製造商在設計電池時就考慮到了報廢後的回收利用,從而提高了電池的可回收性。

預計在預測期內,能源儲存系統領域將實現最高的複合年成長率。

預計在預測期內,能源儲存系統領域將呈現最高的成長率,這主要得益於可再生能源裝置容量的擴張。隨著太陽能和發電工程規模的擴大,電網級儲能的需求也隨之成長,導致更多電池被報廢。儲能系統電池通常具有特殊的配置,需要專門的回收方法。模組化設計和二次利用技術的創新正在簡化從再利用到回收的過渡。為了應對日益成長的電池量,公用事業公司和新興企業正在投資開發專門用於儲能系統的回收技術。

佔比最大的地區:

亞太地區預計將在預測期內保持最大的市場佔有率,這主要得益於其在電動車生產和電池製造方面的優勢。中國、日本和韓國等國家正在投資先進的回收技術和政策架構。中國的監管要求和產業整合正在加速大型回收設施的建設。該地區的主要企業正在將回收環節垂直整合到其供應鏈中,以提高效率。政府激勵措施和合資企業正在推動自動化拆解和材料回收技術的創新。

複合年成長率最高的地區:

在預測期內,北美預計將實現最高的複合年成長率,這主要得益於電動車普及率的提高和相關政策的支持。例如,美國的《通膨控制法案》等政策正在鼓勵對國內電池供應鏈和回收基礎設施的投資。像Redwood Materials and Recycling這樣的公司正在率先開發可擴展的閉合迴路回收模式。汽車製造商正與回收商合作,以確保關鍵材料的供應並實現永續性目標。不斷擴大的電池回收網路和日益成長的二次利用應用正在擴大該地區的回收基礎。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
  • 分析材料

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球電動車 (EV) 電池回收市場(按化學成分分類)

  • 鋰離子電池
  • 鎳氫電池
  • 鉛酸電池
  • 鈉離子

6. 全球電動車 (EV) 電池回收市場(按電池供應來源分類)

  • 電池式電動車(BEV)
  • 插電式混合動力汽車(PHEV)
  • 混合動力汽車(HEV)

7. 全球電動車 (EV) 電池回收市場(按回收工藝分類)

  • 火法冶金工藝
  • 濕式冶金工藝
  • 機械/物理過程
  • 直接回收工藝

8. 全球電動車 (EV) 電池回收市場(按回收階段分類)

  • 收集和物流
  • 拆卸和分類
  • 材料提取/純化
  • 重複利用和重複利用

9. 全球電動車 (EV) 電池回收市場(按最終用戶分類)

  • 汽車產業
  • 能源儲存系統
  • 家用電子電器
  • 工業應用
  • 其他最終用戶

第10章 全球電動車電池回收市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章:公司簡介

  • Redwood Materials
  • Ecobat
  • Retriev Technologies
  • Li-Cycle
  • Neometals
  • American Manganese Inc.
  • Umicore
  • American Battery Technology Company
  • Sumitomo Metal Mining
  • Glencore
  • Ganfeng Lithium
  • Stena Recycling(Stena Metall)
  • Fortum
  • ACCUREC Recycling GmbH
  • Altilium
Product Code: SMRC32278

According to Stratistics MRC, the Global Electric Vehicle (EV) Battery Recycling Market is accounted for $619.81 million in 2025 and is expected to reach $2670.17 million by 2032 growing at a CAGR of 23.2% during the forecast period. EV Battery Recycling involves reclaiming and reusing materials from spent or discarded electric vehicle batteries. It includes steps like collection, disassembly, and material recovery of essential elements such as lithium, cobalt, and nickel. The process aims to lessen environmental harm, conserve critical raw materials, and encourage sustainability. By reintroducing recovered materials into production, it supports a circular economy and reduces dependency on virgin resource extraction.

According to the regulations, about 75.0%, 65.0%, and 50% of the weight of battery must be recovered as recycled material for nickel-cadmium, lead-acid, and other chemistries, respectively.

Market Dynamics:

Driver:

Economic value of critical materials

The surge in electric vehicle adoption is amplifying the need to reclaim essential metals like lithium, cobalt, and nickel from used batteries. These materials are vital for advanced battery production and are becoming increasingly scarce and costly. Recycling offers a strategic solution to recover these inputs, reducing reliance on unstable global supply chains. Innovations in direct recycling and hydrometallurgy are enhancing extraction efficiency and material quality. The financial and environmental benefits of recovering high-value materials are propelling investment in battery recycling infrastructure.

Restraint:

Technical complexity & heterogeneity

Differences in lithium-ion formats-such as LFP, NMC, and NCA-require customized dismantling and processing workflows. Manual disassembly remains hazardous and inefficient, especially with embedded electronics and high-voltage components. Automation is still evolving and struggles with non-standardized battery packs. Additional complications arise from adhesives, cooling systems, and integrated sensors that obstruct clean material separation. These technical challenges elevate operational costs and slow down the deployment of scalable recycling solutions.

Opportunity:

Creation of closed-loop supply chains

Automakers and recyclers are collaborating to secure secondary raw materials and reduce carbon footprints. Breakthroughs in direct cathode reuse and smart sorting technologies are enabling efficient material recovery. Digital tools like battery passports and blockchain are improving traceability and compliance across the recycling chain. Regulatory mandates in regions like the EU and China are accelerating circular practices through extended producer responsibility. These trends are driving innovation in reverse logistics, second-life battery applications, and regional recycling hubs.

Threat:

Fluctuation in virgin raw material prices

Instability in the pricing of virgin lithium, cobalt, and nickel threatens the competitiveness of recycled alternatives. When raw material costs decline, recycling operations may become economically unviable, discouraging investment. This volatility complicates long-term planning and delays the rollout of advanced recycling technologies. It also affects contract negotiations and financing for new facilities. Some companies are exploring price stabilization mechanisms and long-term procurement agreements to mitigate risk. However, without consistent policy support or mandatory recycled content requirements, the market remains exposed to commodity price swings.

Covid-19 Impact:

The COVID-19 pandemic disrupted global battery supply chains, delaying recycling initiatives and limiting access to end-of-life batteries. Workforce shortages and lockdowns impacted collection and processing operations, causing temporary setbacks. However, the crisis accelerated the adoption of digital tools such as AI-based diagnostics and remote monitoring systems. The pandemic underscored the importance of resilient, decentralized recycling infrastructure to reduce dependency on imports. Post-pandemic strategies now focus on automation, regional sourcing, and harmonized regulations to strengthen the recycling ecosystem.

The lithium-ion batteries segment is expected to be the largest during the forecast period

The lithium-ion batteries segment is expected to account for the largest market share during the forecast period, due to their widespread use in electric vehicles and energy storage systems. These batteries contain high concentrations of valuable metals, making them prime candidates for recovery. Advances in hydrometallurgical and direct recycling methods are improving extraction rates and reducing environmental impact. The growing EV fleet is generating a consistent stream of spent batteries, boosting recycling demand. Manufacturers are increasingly designing batteries with end-of-life recovery in mind, enhancing recyclability.

The energy storage systems segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the energy storage systems segment is predicted to witness the highest growth rate, driven by the expansion of renewable energy installations. As solar and wind projects scale up, the demand for grid-level storage is rising, leading to more battery retirements. ESS batteries often have unique configurations that require specialized recycling approaches. Innovations in modular design and second-life applications are streamlining the transition from reuse to recycling. Utilities and startups are investing in ESS-specific recycling technologies to manage increasing volumes.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, supported by its dominance in EV production and battery manufacturing. Countries like China, Japan, and South Korea are investing in advanced recycling technologies and policy frameworks. China's regulatory mandates and industrial consolidation are accelerating the development of large-scale recycling facilities. Major players in the region are vertically integrating recycling into their supply chains to improve efficiency. Government incentives and joint ventures are fostering innovation in automated dismantling and material recovery.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by rising EV adoption and supportive legislation. U.S. policies like the Inflation Reduction Act are channeling investments into domestic battery supply chains and recycling infrastructure. Companies such as Redwood Materials and Li-Cycle are pioneering scalable, closed-loop recycling models. Automakers are partnering with recyclers to secure critical materials and meet sustainability targets. Growth in battery collection networks and second-life applications is expanding the regional recycling footprint.

Key players in the market

Some of the key players in Electric Vehicle (EV) Battery Recycling Market include Redwood, Ecobat, Retriev Technologies, Li-Cycle, Neometals, American Battery Technology Company, Umicore, American Manganese, Sumitomo Metal Mining, Glencore, Ganfeng Lithium, Stena Recycling, Fortum, ACCUREC, and Altilium.

Key Developments:

In September 2025, American Battery Technology Company and Call2Recycle announced a strategic partnership to advance the recycling of lithium-ion batteries for consumers across the United States. This collaboration expands ABTC's business model from primarily business-to-business operations to include a direct-to-consumer recycling channel, creating a more robust circular economy for essential battery metals.

In March 2022, Retriev Technologies has acquired Battery Solutions, the North American leader in sustainable, end-to-end management solutions for end-of-life batteries and consumer electronics. The combined offering brings two complementary industry leaders together to create the first and only comprehensive battery management solution in North America.

Chemistries Covered:

  • Lithium-Ion Batteries
  • Nickel-Metal Hydride Batteries
  • Lead-Acid Batteries
  • Sodium-Ion

Battery Sources Covered:

  • Battery Electric Vehicles (BEVs)
  • Plug-in Hybrid Electric Vehicles (PHEVs)
  • Hybrid Electric Vehicles (HEVs)

Recycling Processes Covered:

  • Pyrometallurgical Process
  • Hydrometallurgical Process
  • Mechanical/Physical Process
  • Direct Recycling Process

Recycling Stages Covered:

  • Collection & Logistics
  • Dismantling & Sorting
  • Material Extraction & Refining
  • Reuse & Repurposing

End Users Covered:

  • Automotive Industry
  • Energy Storage Systems
  • Consumer Electronics
  • Industrial Applications
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Electric Vehicle (EV) Battery Recycling Market, By Chemistry

  • 5.1 Introduction
  • 5.2 Lithium-Ion Batteries
  • 5.3 Nickel-Metal Hydride Batteries
  • 5.4 Lead-Acid Batteries
  • 5.5 Sodium-Ion

6 Global Electric Vehicle (EV) Battery Recycling Market, By Battery Source

  • 6.1 Introduction
  • 6.2 Battery Electric Vehicles (BEVs)
  • 6.3 Plug-in Hybrid Electric Vehicles (PHEVs)
  • 6.4 Hybrid Electric Vehicles (HEVs)

7 Global Electric Vehicle (EV) Battery Recycling Market, By Recycling Process

  • 7.1 Introduction
  • 7.2 Pyrometallurgical Process
  • 7.3 Hydrometallurgical Process
  • 7.4 Mechanical/Physical Process
  • 7.5 Direct Recycling Process

8 Global Electric Vehicle (EV) Battery Recycling Market, By Recycling Stage

  • 8.1 Introduction
  • 8.2 Collection & Logistics
  • 8.3 Dismantling & Sorting
  • 8.4 Material Extraction & Refining
  • 8.5 Reuse & Repurposing

9 Global Electric Vehicle (EV) Battery Recycling Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive Industry
  • 9.3 Energy Storage Systems
  • 9.4 Consumer Electronics
  • 9.5 Industrial Applications
  • 9.6 Other End Users

10 Global Electric Vehicle (EV) Battery Recycling Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Redwood Materials
  • 12.2 Ecobat
  • 12.3 Retriev Technologies
  • 12.4 Li-Cycle
  • 12.5 Neometals
  • 12.6 American Manganese Inc.
  • 12.7 Umicore
  • 12.8 American Battery Technology Company
  • 12.9 Sumitomo Metal Mining
  • 12.10 Glencore
  • 12.11 Ganfeng Lithium
  • 12.12 Stena Recycling (Stena Metall)
  • 12.13 Fortum
  • 12.14 ACCUREC Recycling GmbH
  • 12.15 Altilium

List of Tables

  • Table 1 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Chemistry (2024-2032) ($MN)
  • Table 3 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Lithium-Ion Batteries (2024-2032) ($MN)
  • Table 4 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Nickel-Metal Hydride Batteries (2024-2032) ($MN)
  • Table 5 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Lead-Acid Batteries (2024-2032) ($MN)
  • Table 6 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Sodium-Ion (2024-2032) ($MN)
  • Table 7 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Battery Source (2024-2032) ($MN)
  • Table 8 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Battery Electric Vehicles (BEVs) (2024-2032) ($MN)
  • Table 9 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Plug-in Hybrid Electric Vehicles (PHEVs) (2024-2032) ($MN)
  • Table 10 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Hybrid Electric Vehicles (HEVs) (2024-2032) ($MN)
  • Table 11 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Recycling Process (2024-2032) ($MN)
  • Table 12 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Pyrometallurgical Process (2024-2032) ($MN)
  • Table 13 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Hydrometallurgical Process (2024-2032) ($MN)
  • Table 14 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Mechanical/Physical Process (2024-2032) ($MN)
  • Table 15 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Direct Recycling Process (2024-2032) ($MN)
  • Table 16 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Recycling Stage (2024-2032) ($MN)
  • Table 17 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Collection & Logistics (2024-2032) ($MN)
  • Table 18 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Dismantling & Sorting (2024-2032) ($MN)
  • Table 19 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Material Extraction & Refining (2024-2032) ($MN)
  • Table 20 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Reuse & Repurposing (2024-2032) ($MN)
  • Table 21 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By End User (2024-2032) ($MN)
  • Table 22 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Automotive Industry (2024-2032) ($MN)
  • Table 23 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Energy Storage Systems (2024-2032) ($MN)
  • Table 24 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 25 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Industrial Applications (2024-2032) ($MN)
  • Table 26 Global Electric Vehicle (EV) Battery Recycling Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.