封面
市場調查報告書
商品編碼
1865388

全球通訊基礎設施被動冷卻系統市場預測(至2032年)-按類型、材料、組件、安裝方法、應用、最終用戶和地區分類的分析

Passive Cooling Systems for Telecom Infrastructure Market Forecasts to 2032 - Global Analysis By Type, Material, Component, Installation, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的一項研究,預計到 2025 年,全球通訊基礎設施被動冷卻系統市場規模將達到 3.212 億美元,到 2032 年將達到 7.055 億美元。

預計在預測期內,被動式冷卻系統將以11.9%的複合年成長率成長。用於通訊基礎設施的被動式冷卻系統不依賴風扇或壓縮機等機械部件,而是依靠傳導、對流和輻射等自然散熱方式。這些系統旨在維持通訊設備的最佳動作溫度,尤其是在偏遠和能源受限的環境中。透過利用環境氣流和熱設計,被動式冷卻可以提高可靠性、降低能耗並最大限度地減少維護。常見的實現方式包括散熱器、通風機殼以及專為室外機櫃和基地台設計的導熱材料。

根據印度通訊部的數據,截至 2023 年 12 月,印度通訊業的電話普及率已達到 85.69%,其中農村電話普及率達到 58.56%,這反映出通訊服務在不同地區的顯著普及。

5G和邊緣運算節點的高密度部署

隨著通訊業者不斷融合網路以滿足低延遲和高頻寬的需求,對高效能、免維護冷卻解決方案的需求日益成長。被動式冷卻系統無需外部電源或機械零件,因其在分散式環境中的可靠性和能源效率而越來越受歡迎。這些系統尤其適用於遠端和空間受限的安裝環境,在這些環境中,主動冷卻並不現實。

將被動系統整合到現有基礎設施中

許多現有的基地台和機房最初設計時就考慮到了主動冷卻系統,這引發了人們對結構相容性的擔憂。通訊站點缺乏標準化設計也使整合工作變得複雜,通常需要進行客製化改造,從而增加了部署成本。此外,在空氣流通受限的高密度城市環境中,被動式系統的效率可能較低。這些因素使得通訊業者不願放棄傳統的冷卻方式,尤其是在基礎設施完善的成熟市場。

在模組化部署中結合被動冷卻和液冷

利用熱管和相變材料的熱導率,並結合液冷迴路的混合系統,在高負載環境下可提供卓越的性能。這種協同作用能夠實現緊湊、擴充性且節能的冷卻架構,使其成為貨櫃式邊緣資料中心和微型基地台的理想選擇。隨著通訊業者尋求降低營運成本和碳排放,此類整合解決方案正日益受到青睞。此外,這些系統的模組化設計有助於在服務不足和偏遠地區快速部署,符合全球互聯互通的舉措。

環境溫度上升和不可預測的天氣模式

氣候變遷對被動式冷卻系統的可靠性構成日益嚴重的威脅,尤其是在極端熱浪和極端天氣頻繁的地區。被動式系統依靠自然對流和環境條件散熱,這會導致其在高溫環境下性能下降。長時間暴露於高溫環境會對通訊設備造成熱應力,並增加服務中斷的風險。此外,諸如濕度驟增和沙塵暴等不可預測的天氣模式也會降低熱交換器和機殼的效率。

新冠疫情的影響:

新冠疫情對通訊基礎設施被動冷卻系統市場產生了雙重影響。一方面,供應鏈中斷和勞動力短缺延緩了冷卻組件的生產和部署,尤其是依賴跨境製造的地區。另一方面,遠距辦公、線上教育和數位服務的激增加速了對強大通訊網路的需求,並促使企業加大對邊緣基礎設施的投資。這種轉變凸顯了低維護、高能源效率冷卻解決方案的重要性,尤其是在無人值守或難以進入的場所。

預計在預測期內,基於熱管的冷卻系統細分市場將佔據最大的市場佔有率。

由於熱管冷卻系統無需外部電源即可高效散熱,預計在預測期內將佔據最大的市場佔有率。這些系統利用相變原理將熱量從敏感元件中散發出去,使其成為通訊機房和戶外機櫃的理想選擇。其緊湊的外形、靜音的運作和低維護需求,使其成為都市區和鄉村安裝的首選。

預計在預測期內,相變材料(PCM)細分市場將呈現最高的複合年成長率。

由於相變材料(PCM)能夠在相變過程中吸收和釋放大量熱能,預計在預測期內,相變材料市場將呈現最高的成長率。這些材料正擴大應用於通訊機櫃和電池機殼中,以在無需主動冷卻的情況下應對尖峰時段熱負荷。它們對溫度波動的適應性和緊湊的整合性使其成為下一代通訊基地台的理想選擇。生物基和可回收相變材料的創新也符合永續性目標,進一步提升了其市場吸引力。

佔比最大的地區:

由於北美擁有成熟的通訊基礎設施和對5G技術的早期應用,預計該地區將在預測期內佔據最大的市場佔有率。該地區資料中心和基地台高度集中,因此需要高效的溫度控管解決方案。政府為促進能源效率和碳中和而採取的舉措,正鼓勵通訊業者轉向被動式冷卻系統。此外,美國和加拿大擁有眾多主要製造商和技術創新者,這有利於產品開發和大規模部署。

複合年成長率最高的地區:

在預測期內,由於邊緣運算和物聯網的快速普及,北美預計將實現最高的複合年成長率。智慧城市、自動駕駛汽車和工業自動化對高速連接的需求日益成長,推動了對具備高效冷卻能力的分散式通訊節點的需求。被動式冷卻系統因其能夠在偏遠和離網環境中運作且維護量極低而備受關注。此外,對綠色基礎設施的監管支持和不斷上漲的能源成本正在加速向被動式溫度控管解決方案的轉變,使北美成為該領域的高成長地區。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球通訊基礎設施被動式冷卻系統市場(按類型分類)

  • 介紹
  • 自然對流冷卻系統
  • 基於相變材料(PCM)的冷卻系統
  • 基於熱管的冷卻系統
  • 輻射冷卻系統
  • 蒸發冷卻系統
  • 混合式被動冷卻系統
  • 其他類型

6. 全球通訊基礎設施被動式冷卻系統材料市場

  • 介紹
  • 石墨和碳基材料
  • 相變材料(PCM)
  • 陶瓷和複合材料
  • 其他成分

7. 全球通訊基礎設施被動式冷卻系統市場(按組件分類)

  • 介紹
  • 散熱器
  • 外殼/櫃體
  • 冷卻面板
  • 導熱材料
  • 通風口和過濾器
  • 其他部件

8. 全球通訊基礎設施被動式冷卻系統市場(以安裝方式分類)

  • 介紹
  • 新安裝
  • 維修和安裝
  • 可攜式安裝

9. 全球通訊基礎設施被動式冷卻系統市場(依冷卻機制分類)

  • 介紹
  • 傳導冷卻
  • 對流冷卻
  • 輻射冷卻
  • 蒸發冷卻
  • 混合機制
  • 其他冷卻機制

10. 全球通訊基礎設施被動式冷卻系統市場(依應用領域分類)

  • 介紹
  • 通訊塔
  • 基地台(BTS)
  • 資料中心和邊緣設施
  • 遠程無線電單元(RRU)
  • 小型基地台微站點
  • 光纖、網路設備
  • 其他用途

第11章:全球通訊基礎設施被動式冷卻系統市場(依最終用戶分類)

  • 介紹
  • 通訊業者
  • 網際服務供應商(ISP)
  • 資料中心營運商
  • 網路設備製造商
  • 政府和國防通訊部門
  • 其他最終用戶

12. 全球通訊基礎設施被動式冷卻系統市場(按地區分類)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第13章 重大進展

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第14章:公司簡介

  • Delta Electronics, Inc.
  • Vertiv Holdings Co.
  • Aavid Thermalloy
  • STULZ GmbH
  • Schneider Electric SE
  • Nokia Networks
  • Huawei Technologies Co., Ltd.
  • CommScope Holding Company, Inc.
  • nVent Electric plc
  • Eaton Corporation plc
  • Rittal GmbH & Co. KG
  • Pfannenberg Group
  • C&D Technologies, Inc.
  • Iceotope Technologies Limited
  • Modine Manufacturing Company
  • Alfa Laval AB
  • Transtherm Cooling Industries
  • Asetek, Inc
Product Code: SMRC32097

According to Stratistics MRC, the Global Passive Cooling Systems for Telecom Infrastructure Market is accounted for $321.2 million in 2025 and is expected to reach $705.5 million by 2032 growing at a CAGR of 11.9% during the forecast period. Passive cooling systems for telecom infrastructure utilize natural heat dissipation methods such as conduction, convection, and radiation without relying on mechanical components like fans or compressors. These systems are engineered to maintain optimal operating temperatures for telecom equipment, especially in remote or energy-constrained environments. By leveraging ambient airflow and thermal design, passive cooling enhances reliability, reduces energy consumption, and minimizes maintenance. Common implementations include heat sinks, ventilated enclosures, and thermally conductive materials tailored for outdoor cabinets and base stations.

According to department of telecommunications, government of India India's telecom sector has achieved a teledensity of 85.69% as of December 2023, with rural teledensity reaching 58.56%, reflecting significant penetration of telecom services across diverse geographies.

Market Dynamics:

Driver:

Dense deployments of 5G and edge computing nodes

As operators densify their networks to meet low-latency and high-bandwidth demands, the need for efficient, maintenance-free cooling solutions has intensified. Passive cooling systems, which operate without external power or mechanical components, are gaining traction for their reliability and energy efficiency in such distributed environments. These systems are particularly suited for remote or space-constrained installations where active cooling is impractical.

Restraint:

Integrating passive systems into existing infrastructure

Many existing base stations and shelters were originally designed for active cooling systems, making structural compatibility a concern. The lack of standardized designs across telecom sites further complicates integration efforts, often requiring custom modifications that increase deployment costs. Additionally, passive systems may have limitations in high-density urban environments where airflow is restricted, reducing their effectiveness. These factors can deter operators from transitioning away from conventional cooling methods, especially in mature markets with entrenched infrastructure.

Opportunity:

Combining passive and liquid cooling for modular deployments

Hybrid systems that leverage the thermal conductivity of heat pipes or phase change materials alongside liquid cooling loops can offer superior performance in high-load environments. This synergy enables compact, scalable, and energy-efficient cooling architectures ideal for containerized edge data centers and micro base stations. As telecom operators seek to reduce operational costs and carbon footprints, such integrated solutions are gaining attention. Moreover, the modular nature of these systems supports rapid deployment in underserved or remote regions, aligning with global connectivity initiatives.

Threat:

Rising ambient temperatures and unpredictable weather patterns

Climate change poses a growing threat to the reliability of passive cooling systems, particularly in regions experiencing extreme heatwaves or erratic weather. Since passive systems rely on natural convection and ambient conditions to dissipate heat, their performance can degrade in high-temperature environments. Prolonged exposure to elevated temperatures may lead to thermal stress on telecom equipment, increasing the risk of service disruptions. Additionally, unpredictable weather patterns such as sudden humidity spikes or dust storms can impair the efficiency of heat exchangers and enclosures.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the passive cooling systems market for telecom infrastructure. On one hand, supply chain disruptions and labor shortages delayed the production and deployment of cooling components, particularly in regions dependent on cross-border manufacturing. On the other hand, the surge in remote work, online education, and digital services accelerated the demand for robust telecom networks, prompting investments in edge infrastructure. This shift underscored the importance of low-maintenance, energy-efficient cooling solutions, especially in unmanned or hard-to-reach sites.

The heat pipe-based cooling systems segment is expected to be the largest during the forecast period

The heat pipe-based cooling systems segment is expected to account for the largest market share during the forecast period due to their proven efficiency in dissipating heat without requiring external power. These systems utilize phase change principles to transfer heat away from sensitive components, making them ideal for telecom shelters and outdoor enclosures. Their compact form factor, silent operation, and low maintenance requirements make them a preferred choice for both urban and rural deployments.

The phase change materials (PCMs) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the phase change materials (PCMs) segment is predicted to witness the highest growth rate, influenced by, their ability to absorb and release large amounts of thermal energy during phase transitions. These materials are increasingly being integrated into telecom cabinets and battery enclosures to manage peak thermal loads without active cooling. Their adaptability to fluctuating temperatures and compact integration potential make them suitable for next-generation telecom sites. Innovations in bio-based and recyclable PCMs are also aligning with sustainability goals, further enhancing their market appeal.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, fuelled by, its mature telecom infrastructure and early adoption of 5G technologies. The region hosts a dense network of data centers and base stations, necessitating efficient thermal management solutions. Government initiatives promoting energy efficiency and carbon neutrality are encouraging telecom operators to transition toward passive cooling systems. Additionally, the presence of leading manufacturers and technology innovators in the U.S. and Canada is fostering product development and deployment at scale.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by, rapid advancements in edge computing and IoT deployments. The increasing demand for high-speed connectivity in smart cities, autonomous vehicles, and industrial automation is driving the need for distributed telecom nodes with efficient cooling. Passive systems are gaining traction due to their ability to operate in remote or off-grid locations with minimal maintenance. Furthermore, regulatory support for green infrastructure and rising energy costs are accelerating the shift toward passive thermal management solutions, positioning North America as a high-growth region in this domain.

Key players in the market

Some of the key players in Passive Cooling Systems for Telecom Infrastructure Market include Key players in the passive cooling systems market for telecom infrastructure include Delta Electronics, Inc., Vertiv Holdings Co., Aavid Thermalloy, STULZ GmbH, Schneider Electric SE, Nokia Networks, Huawei Technologies Co., Ltd., CommScope Holding Company, Inc., nVent Electric plc, Eaton Corporation plc, Rittal GmbH & Co. KG, Pfannenberg Group, C&D Technologies, Inc., Iceotope Technologies Limited, Modine Manufacturing Company, Alfa Laval AB, Transtherm Cooling Industries, and Asetek, Inc.

Key Developments:

In October 2025, Vertiv partnered with NVIDIA to develop 800 VDC platform designs for next-gen AI factories. This initiative supports high-density compute environments with advanced power and cooling architectures. It marks a major leap in AI infrastructure readiness.

In September 2025, Delta unveiled next-gen digital twins, cobots, and smart manufacturing solutions at SEMICON India 2025. The portfolio includes DIATwin Virtual Machine, Smart Screwdriving Systems, and Smart Green Facility Monitoring.

In September 2025, STULZ introduced the CyberRack SideCooler for efficient cooling of high-density data center racks. The closed-loop variant supports higher water temperatures and enclosure-free operation. It's tailored for AI and edge computing deployments.

Types Covered:

  • Natural Convection Cooling Systems
  • Phase Change Material (PCM) Based Cooling Systems
  • Heat Pipe-Based Cooling Systems
  • Radiative Cooling Systems
  • Evaporative Cooling Systems
  • Hybrid Passive Cooling Systems
  • Other Types

Materials Covered:

  • Aluminum
  • Copper
  • Graphite and Carbon-Based Materials
  • Phase Change Materials (PCMs)
  • Ceramic and Composite Materials
  • Other Materials

Components Covered:

  • Heat Sinks
  • Enclosures and Cabinets
  • Cooling Panels
  • Thermal Interface Materials
  • Vents and Filters
  • Other Components

Installations Covered:

  • New Installation
  • Retrofit Installation
  • Portable Installations

Cooling Mechanisms Covered:

  • Conduction Cooling
  • Convection Cooling
  • Radiation Cooling
  • Evaporative Cooling
  • Hybrid Mechanisms
  • Other Cooling Mechanisms

Applications Covered:

  • Telecom Towers
  • Base Transceiver Stations (BTS)
  • Data Centers and Edge Facilities
  • Remote Radio Units (RRUs)
  • Small Cells and Micro Sites
  • Fiber Optic and Network Equipment
  • Other Applications

End Users Covered:

  • Telecom Operators
  • Internet Service Providers (ISPs)
  • Data Center Operators
  • Network Equipment Manufacturers
  • Government & Defense Communication Units
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Passive Cooling Systems for Telecom Infrastructure Market, By Type

  • 5.1 Introduction
  • 5.2 Natural Convection Cooling Systems
  • 5.3 Phase Change Material (PCM) Based Cooling Systems
  • 5.4 Heat Pipe-Based Cooling Systems
  • 5.5 Radiative Cooling Systems
  • 5.6 Evaporative Cooling Systems
  • 5.7 Hybrid Passive Cooling Systems
  • 5.8 Other Types

6 Global Passive Cooling Systems for Telecom Infrastructure Market, By Material

  • 6.1 Introduction
  • 6.2 Aluminum
  • 6.3 Copper
  • 6.4 Graphite and Carbon-Based Materials
  • 6.5 Phase Change Materials (PCMs)
  • 6.6 Ceramic and Composite Materials
  • 6.7 Other Materials

7 Global Passive Cooling Systems for Telecom Infrastructure Market, By Component

  • 7.1 Introduction
  • 7.2 Heat Sinks
  • 7.3 Enclosures and Cabinets
  • 7.4 Cooling Panels
  • 7.5 Thermal Interface Materials
  • 7.6 Vents and Filters
  • 7.7 Other Components

8 Global Passive Cooling Systems for Telecom Infrastructure Market, By Installation

  • 8.1 Introduction
  • 8.2 New Installation
  • 8.3 Retrofit Installation
  • 8.4 Portable Installations

9 Global Passive Cooling Systems for Telecom Infrastructure Market, By Cooling Mechanism

  • 9.1 Introduction
  • 9.2 Conduction Cooling
  • 9.3 Convection Cooling
  • 9.4 Radiation Cooling
  • 9.5 Evaporative Cooling
  • 9.6 Hybrid Mechanisms
  • 9.7 Other Cooling Mechanisms

10 Global Passive Cooling Systems for Telecom Infrastructure Market, By Application

  • 10.1 Introduction
  • 10.2 Telecom Towers
  • 10.3 Base Transceiver Stations (BTS)
  • 10.4 Data Centers and Edge Facilities
  • 10.5 Remote Radio Units (RRUs)
  • 10.6 Small Cells and Micro Sites
  • 10.7 Fiber Optic and Network Equipment
  • 10.8 Other Applications

11 Global Passive Cooling Systems for Telecom Infrastructure Market, By End User

  • 11.1 Introduction
  • 11.2 Telecom Operators
  • 11.3 Internet Service Providers (ISPs)
  • 11.4 Data Center Operators
  • 11.5 Network Equipment Manufacturers
  • 11.6 Government & Defense Communication Units
  • 11.7 Other End Users

12 Global Passive Cooling Systems for Telecom Infrastructure Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Delta Electronics, Inc.
  • 14.2 Vertiv Holdings Co.
  • 14.3 Aavid Thermalloy
  • 14.4 STULZ GmbH
  • 14.5 Schneider Electric SE
  • 14.6 Nokia Networks
  • 14.7 Huawei Technologies Co., Ltd.
  • 14.8 CommScope Holding Company, Inc.
  • 14.9 nVent Electric plc
  • 14.10 Eaton Corporation plc
  • 14.11 Rittal GmbH & Co. KG
  • 14.12 Pfannenberg Group
  • 14.13 C&D Technologies, Inc.
  • 14.14 Iceotope Technologies Limited
  • 14.15 Modine Manufacturing Company
  • 14.16 Alfa Laval AB
  • 14.17 Transtherm Cooling Industries
  • 14.18 Asetek, Inc

List of Tables

  • Table 1 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Natural Convection Cooling Systems (2024-2032) ($MN)
  • Table 4 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Phase Change Material (PCM) Based Cooling Systems (2024-2032) ($MN)
  • Table 5 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Heat Pipe-Based Cooling Systems (2024-2032) ($MN)
  • Table 6 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Radiative Cooling Systems (2024-2032) ($MN)
  • Table 7 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Evaporative Cooling Systems (2024-2032) ($MN)
  • Table 8 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Hybrid Passive Cooling Systems (2024-2032) ($MN)
  • Table 9 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 10 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Material (2024-2032) ($MN)
  • Table 11 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Aluminum (2024-2032) ($MN)
  • Table 12 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Copper (2024-2032) ($MN)
  • Table 13 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Graphite and Carbon-Based Materials (2024-2032) ($MN)
  • Table 14 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Phase Change Materials (PCMs) (2024-2032) ($MN)
  • Table 15 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Ceramic and Composite Materials (2024-2032) ($MN)
  • Table 16 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 17 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Component (2024-2032) ($MN)
  • Table 18 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Heat Sinks (2024-2032) ($MN)
  • Table 19 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Enclosures and Cabinets (2024-2032) ($MN)
  • Table 20 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Cooling Panels (2024-2032) ($MN)
  • Table 21 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Thermal Interface Materials (2024-2032) ($MN)
  • Table 22 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Vents and Filters (2024-2032) ($MN)
  • Table 23 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 24 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Installation (2024-2032) ($MN)
  • Table 25 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By New Installation (2024-2032) ($MN)
  • Table 26 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Retrofit Installation (2024-2032) ($MN)
  • Table 27 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Portable Installations (2024-2032) ($MN)
  • Table 28 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Cooling Mechanism (2024-2032) ($MN)
  • Table 29 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Conduction Cooling (2024-2032) ($MN)
  • Table 30 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Convection Cooling (2024-2032) ($MN)
  • Table 31 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Radiation Cooling (2024-2032) ($MN)
  • Table 32 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Evaporative Cooling (2024-2032) ($MN)
  • Table 33 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Hybrid Mechanisms (2024-2032) ($MN)
  • Table 34 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Cooling Mechanisms (2024-2032) ($MN)
  • Table 35 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Application (2024-2032) ($MN)
  • Table 36 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Telecom Towers (2024-2032) ($MN)
  • Table 37 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Base Transceiver Stations (BTS) (2024-2032) ($MN)
  • Table 38 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Data Centers and Edge Facilities (2024-2032) ($MN)
  • Table 39 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Remote Radio Units (RRUs) (2024-2032) ($MN)
  • Table 40 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Small Cells and Micro Sites (2024-2032) ($MN)
  • Table 41 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Fiber Optic and Network Equipment (2024-2032) ($MN)
  • Table 42 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 43 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By End User (2024-2032) ($MN)
  • Table 44 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Telecom Operators (2024-2032) ($MN)
  • Table 45 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Internet Service Providers (ISPs) (2024-2032) ($MN)
  • Table 46 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Data Center Operators (2024-2032) ($MN)
  • Table 47 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Network Equipment Manufacturers (2024-2032) ($MN)
  • Table 48 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Government & Defense Communication Units (2024-2032) ($MN)
  • Table 49 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.