封面
市場調查報告書
商品編碼
1859779

全球雲端原生 5G 核心網路市場:預測至 2032 年 - 按元件、部署方式、網路、應用程式、最終用戶和區域進行分析

Cloud Native 5G Core Market Forecasts to 2032 - Global Analysis By Component, Deployment Mode, Network, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球雲端原生 5G 核心市場預計到 2025 年將達到 46 億美元,到 2032 年將達到 192 億美元,預測期內複合年成長率為 22.5%。

雲端原生 5G 核心網路是一個模組化、可擴充的架構,它是基於容器化、微服務和編配等雲端原生原則所建構。該架構支援混合雲端和多重雲端環境的動態部署、自動化和高效資源利用。它旨在實現敏捷性和彈性,支援快速服務創新、網路切片和即時擴展。透過解耦網路功能,實現獨立昇級和故障隔離,該架構能夠為通訊業者和企業應用場景帶來更高的營運效率、更低的延遲和更快的上市速度。

通訊業者正在採用雲端原生核心架構,以動態擴展其服務。

通訊業者正在向雲端原生 5G 核心網路遷移,以實現動態擴展、服務敏捷性和更快的部署週期。這些架構利用容器化微服務和編配平台,根據流量需求即時調整網路。這種轉變支持經濟高效的擴展,並提高了混合雲和多重雲端環境下的營運靈活性。隨著對低延遲應用和企業級連接的需求不斷成長,雲端原生核心網路正成為下一代網路策略的核心。

需要進行重大的架構和營運變更。

通訊業者必須投資新的技能、DevOps 工作流程以及 Kubernetes 等容器編排管理工具。遷移過程還需要嚴格的測試、安全檢驗以及與現有 OSS/BSS 系統的整合,這可能會延緩部署進度。此外,在多供應商環境中管理分散式工作負載也帶來了故障隔離、效能監控和生命週期管理的挑戰。這些複雜性可能會阻礙雲端成熟度較低的營運商採用雲端技術。

將人工智慧/機器學習技術應用於預測性維護和交通最佳化

人工智慧驅動的分析能夠主動偵測異常情況、預測需求高峰並自動分配資源,進而提升網路可靠性和效率。電訊正在探索閉合迴路自動化和基於意圖的編配,以減少人工干預並提高服務品質。這些功能還支援自主網路、動態切片和即時服務等級協定 (SLA) 執行等高階用例,使雲端原生核心成為智慧連線的推動者。

監理和合規挑戰

業者必須遵守各地區關於資料本地化、合法攔截和跨境流量管理的法規。不同司法管轄區政策的不一致會使雲端基礎設施規劃複雜化,並限制其可擴充性。此外,對供應商中立性、開放介面和網路安全管治的擔憂也會減緩雲端技術的普及,尤其是在監管嚴格的市場。這些監管障礙對跨國部署和官民合作關係構成策略風險。

新冠疫情的影響:

新冠疫情加速了通訊業的數位轉型,並推動了向雲端原生架構的遷移。隨著遠距辦公、虛擬協作和數位服務需求的不斷成長,通訊業者優先考慮能夠快速擴展的靈活軟體定義網路。雲端原生核心網路實現了遠端配置、自動更新和集中監控,從而降低了對實體基礎架構的依賴。儘管最初的供應鏈中斷影響了硬體的可用性,但這場危機凸顯了雲端基礎網路模式的必要性。

預計在預測期內,管理和編配板塊將成為最大的板塊。

預計在預測期內,管理和編配領域將佔據最大的市場佔有率,因為它在自動化雲端原生環境的生命週期維運中發揮關鍵作用。這些平台能夠編排容器化網路功能、監控效能並執行策略驅動的工作流程。它們還受益於與人工智慧引擎和服務保障框架的整合,從而實現即時可見性和控制。其擴充性和與供應商無關的功能使其成為多重雲端部署的必備工具。

預計在預測期內,獨立組網5G領域將達到最高的複合年成長率。

獨立組網(SA)5G 領域能夠獨立於傳統 LTE 基礎設施提供完整的 5G 功能,預計在預測期內將達到最高成長率。與非獨立組網(NSA)5G 不同,SA 核心網路支援網路切片、超可靠低延遲通訊(URLLC)和大規模機器通訊(mMTC)等進階功能。企業和政府正在部署 SA 核心網路用於專用網路、智慧製造和關鍵任務應用。

佔比最大的地區:

由於亞太地區積極部署5G、政府大力支持以及主要經濟體快速數位化,預計該地區將在預測期內佔據最大的市場佔有率。中國、日本、韓國和印度等國家正大力投資通訊基礎設施和雲端原生技術。通訊業者與超大規模資料中心業者之間的策略夥伴關係也正在加速雲端原生核心網路的部署,使亞太地區成為全球5G轉型領域的領導者。

複合年成長率最高的地區:

亞太地區預計將在預測期內保持最高的複合年成長率,這主要得益於行動寬頻普及率的提高、物聯網應用的日益廣泛以及有利的監管改革。新興市場正優先採用雲端原生架構,以克服傳統技術的限制並支援可擴展的連接。該地區對技術創新的重視,加上具有競爭力的通訊資費,正在推動雲端原生核心解決方案的快速成長和技術進步。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 感染疾病疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球雲端原生 5G 核心市場(依組件分類)

  • 網路功能
  • 管理與編配
  • 基於服務的架構
  • 安全解決方案
  • 其他部件

6. 全球雲端原生 5G 核心網路市場依部署方式分類

  • 公共雲端
  • 私有雲端
  • 混合雲端

7. 全球雲端原生 5G 核心網路市場

  • 獨立組網 5G
  • 非獨立組網 5G

8. 全球雲端原生 5G 核心市場(按應用分類)

  • eMBB (Enhanced Mobile Broadband)
  • URLLC (Ultra-Reliable Low Latency Communications)
  • mMTC (Massive Machine Type Communications)
  • 智慧城市
  • 工業自動化
  • 其他用途

9. 全球雲端原生 5G 核心市場(依最終用戶分類)

  • 通訊業者
  • 公司
  • 政府/公共部門
  • 託管服務供應商
  • 系統整合商
  • 其他最終用戶

第10章 全球雲端原生 5G 核心市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第12章:公司簡介

  • Ericsson
  • Nokia
  • Huawei Technologies
  • Samsung Electronics
  • ZTE Corporation
  • Mavenir
  • Cisco Systems
  • NEC Corporation
  • HPE
  • Juniper Networks
  • Vmware
  • Microsoft Azure
  • Amazon Web Services(AWS)
  • Affirmed Networks
  • Casa Systems
  • Intel Corporation
  • Red Hat
Product Code: SMRC32003

According to Stratistics MRC, the Global Cloud Native 5G Core Market is accounted for $4.6 billion in 2025 and is expected to reach $19.2 billion by 2032 growing at a CAGR of 22.5% during the forecast period. Cloud Native 5G Cores are modular, scalable architecture built using cloud-native principles such as containerization, microservices, and orchestration. It enables dynamic deployment, automation, and efficient resource utilization across hybrid and multi-cloud environments. Designed for agility and resilience, it supports rapid service innovation, network slicing, and real-time scalability. This architecture decouples network functions, allowing independent upgrades and fault isolation, thereby enhancing operational efficiency, reducing latency, and accelerating time-to-market for telecom operators and enterprise use cases.

Market Dynamics:

Driver:

Operators are adopting cloud-native cores to dynamically scale services

Telecom operators are increasingly transitioning to cloud-native 5G cores to enable dynamic scaling, service agility, and faster deployment cycles. These architectures leverage containerized microservices and orchestration platforms, allowing real-time network adjustments based on traffic demands. The shift supports cost-effective expansion and enhances operational flexibility across hybrid and multi-cloud environments. With growing demand for low-latency applications and enterprise-grade connectivity, cloud-native cores are becoming central to next-generation network strategies.

Restraint:

Requires significant architectural and operational changes

Telecom providers must invest in new skill sets, DevOps workflows, and container orchestration tools such as Kubernetes. The transition also demands rigorous testing, security validation, and integration with existing OSS/BSS systems, which can delay deployment timelines. Additionally, managing distributed workloads across multi-vendor environments introduces challenges in fault isolation, performance monitoring, and lifecycle management. These complexities may hinder adoption among operators with limited cloud maturity.

Opportunity:

Integration of AI/ML for predictive maintenance and traffic optimization

AI-driven analytics can proactively detect anomalies, forecast demand spikes, and automate resource allocation, improving network reliability and efficiency. Telecom providers are exploring closed-loop automation and intent-based orchestration to reduce manual intervention and enhance service quality. These capabilities also support advanced use cases such as autonomous networks, dynamic slicing, and real-time SLA enforcement, positioning cloud-native cores as enablers of intelligent connectivity.

Threat:

Regulatory and compliance challenges

Operators must navigate region-specific mandates related to data localization, lawful interception, and cross-border traffic management. Inconsistent policies across jurisdictions can complicate cloud infrastructure planning and limit scalability. Moreover, concerns around vendor neutrality, open interfaces, and cybersecurity governance may slow adoption, especially in markets with stringent oversight. These regulatory hurdles pose strategic risks for multinational rollouts and public-private partnerships.

Covid-19 Impact:

The COVID-19 pandemic catalyzed digital transformation across telecom operations, accelerating the shift toward cloud-native architectures. With increased demand for remote work, virtual collaboration, and digital services, operators prioritized flexible, software-defined networks capable of rapid scaling. Cloud-native cores enabled remote provisioning, automated updates, and centralized monitoring, reducing reliance on physical infrastructure. While initial supply chain disruptions affected hardware availability, the crisis underscored the need for resilient, cloud-based network models.

The management and orchestration segment is expected to be the largest during the forecast period

The management and orchestration segment is expected to account for the largest market share during the forecast period due to its critical role in automating lifecycle operations across cloud-native environments. These platforms coordinate containerized network functions, monitor performance, and enforce policy-driven workflows. The segment also benefits from integration with AI engines and service assurance frameworks, enabling real-time visibility and control. Its scalability and vendor-agnostic capabilities make it indispensable for multi-cloud deployments.

The standalone 5G segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the standalone 5G segment is predicted to witness the highest growth rate driven by its ability to deliver full 5G capabilities independent of legacy LTE infrastructure. Unlike non-standalone models, SA cores support advanced features such as network slicing, ultra-reliable low-latency communication (URLLC), and massive machine-type communication (mMTC). Enterprises and governments are increasingly deploying SA cores for private networks, smart manufacturing, and mission-critical applications.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to aggressive 5G rollouts, strong government support, and rapid digitalization across key economies. Countries like China, Japan, South Korea, and India are investing heavily in telecom infrastructure and cloud-native technologies. Strategic partnerships between telcos and hyperscalers are also accelerating cloud-native core deployments, positioning Asia Pacific as a global leader in 5G transformation.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR propelled by expanding mobile broadband penetration, rising IoT adoption, and favorable regulatory reforms. Emerging markets are prioritizing cloud-native architectures to overcome legacy constraints and support scalable connectivity. The region's focus on innovation, combined with competitive telecom pricing, is fostering rapid growth and technological advancement in cloud-native core solutions.

Key players in the market

Some of the key players in Cloud Native 5G Core Market include Ericsson, Nokia, Huawei Technologies, Samsung Electronics, ZTE Corporation, Mavenir, Cisco Systems, NEC Corporation, HPE, Juniper Networks, VMware, Microsoft, Amazon Web Services, Affirmed Networks, Casa Systems, Intel Corporation, and Red Hat.

Key Developments:

In October 2025, Samsung introduced Galaxy XR, an AI-native extended reality device built on Android XR ecosystem. It supports multimodal interaction and immersive productivity. The device is priced at $1,799.99 and targets enterprise and consumer markets.

In October 2025, Nokia announced plans to launch millimeter-wave Fixed Wireless Access products in India within six months. The initiative targets enterprise and hyperscaler growth, with several deals lined up. It supports private 5G and broadband expansion.

In September 2025, Huawei introduced the WATCH GT 6 series, MatePad 12 X, nova 14 smartphones, and FreeBuds 7i. The launch emphasized wearable innovation and seamless productivity. It reflects Huawei's push into premium consumer tech.

Components Covered:

  • Network Functions
  • Management and Orchestration
  • Service-Based Architecture
  • Security Solutions
  • Other Components

Deployment Modes Covered:

  • Public Cloud
  • Private Cloud
  • Hybrid Cloud

Networks Covered:

  • Standalone 5G
  • Non-Standalone 5G

Applications Covered:

  • Enhanced Mobile Broadband (eMBB)
  • Ultra-Reliable Low Latency Communications (URLLC)
  • Massive Machine Type Communications (mMTC)
  • Smart Cities
  • Industrial Automation
  • Other Applications

End Users Covered:

  • Telecom Operators
  • Enterprises
  • Government & Public Sector
  • Managed Service Providers
  • System Integrators
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Cloud Native 5G Core Market, By Component

  • 5.1 Introduction
  • 5.2 Network Functions
  • 5.3 Management and Orchestration
  • 5.4 Service-Based Architecture
  • 5.5 Security Solutions
  • 5.6 Other Components

6 Global Cloud Native 5G Core Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 Public Cloud
  • 6.3 Private Cloud
  • 6.4 Hybrid Cloud

7 Global Cloud Native 5G Core Market, By Network

  • 7.1 Introduction
  • 7.2 Standalone 5G
  • 7.3 Non-Standalone 5G

8 Global Cloud Native 5G Core Market, By Application

  • 8.1 Introduction
  • 8.2 Enhanced Mobile Broadband (eMBB)
  • 8.3 Ultra-Reliable Low Latency Communications (URLLC)
  • 8.4 Massive Machine Type Communications (mMTC)
  • 8.5 Smart Cities
  • 8.6 Industrial Automation
  • 8.7 Other Applications

9 Global Cloud Native 5G Core Market, By End User

  • 9.1 Introduction
  • 9.2 Telecom Operators
  • 9.3 Enterprises
  • 9.4 Government & Public Sector
  • 9.5 Managed Service Providers
  • 9.6 System Integrators
  • 9.7 Other End Users

10 Global Cloud Native 5G Core Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Ericsson
  • 12.2 Nokia
  • 12.3 Huawei Technologies
  • 12.4 Samsung Electronics
  • 12.5 ZTE Corporation
  • 12.6 Mavenir
  • 12.7 Cisco Systems
  • 12.8 NEC Corporation
  • 12.9 HPE
  • 12.10 Juniper Networks
  • 12.11 Vmware
  • 12.12 Microsoft Azure
  • 12.13 Amazon Web Services (AWS)
  • 12.14 Affirmed Networks
  • 12.15 Casa Systems
  • 12.16 Intel Corporation
  • 12.17 Red Hat

List of Tables

  • Table 1 Global Cloud Native 5G Core Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Cloud Native 5G Core Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Cloud Native 5G Core Market Outlook, By Network Functions (2024-2032) ($MN)
  • Table 4 Global Cloud Native 5G Core Market Outlook, By Management and Orchestration (2024-2032) ($MN)
  • Table 5 Global Cloud Native 5G Core Market Outlook, By Service-Based Architecture (2024-2032) ($MN)
  • Table 6 Global Cloud Native 5G Core Market Outlook, By Security Solutions (2024-2032) ($MN)
  • Table 7 Global Cloud Native 5G Core Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 8 Global Cloud Native 5G Core Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 9 Global Cloud Native 5G Core Market Outlook, By Public Cloud (2024-2032) ($MN)
  • Table 10 Global Cloud Native 5G Core Market Outlook, By Private Cloud (2024-2032) ($MN)
  • Table 11 Global Cloud Native 5G Core Market Outlook, By Hybrid Cloud (2024-2032) ($MN)
  • Table 12 Global Cloud Native 5G Core Market Outlook, By Network (2024-2032) ($MN)
  • Table 13 Global Cloud Native 5G Core Market Outlook, By Standalone 5G (2024-2032) ($MN)
  • Table 14 Global Cloud Native 5G Core Market Outlook, By Non-Standalone 5G (2024-2032) ($MN)
  • Table 15 Global Cloud Native 5G Core Market Outlook, By Application (2024-2032) ($MN)
  • Table 16 Global Cloud Native 5G Core Market Outlook, By Enhanced Mobile Broadband (eMBB) (2024-2032) ($MN)
  • Table 17 Global Cloud Native 5G Core Market Outlook, By Ultra-Reliable Low Latency Communications (URLLC) (2024-2032) ($MN)
  • Table 18 Global Cloud Native 5G Core Market Outlook, By Massive Machine Type Communications (mMTC) (2024-2032) ($MN)
  • Table 19 Global Cloud Native 5G Core Market Outlook, By Smart Cities (2024-2032) ($MN)
  • Table 20 Global Cloud Native 5G Core Market Outlook, By Industrial Automation (2024-2032) ($MN)
  • Table 21 Global Cloud Native 5G Core Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 22 Global Cloud Native 5G Core Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global Cloud Native 5G Core Market Outlook, By Telecom Operators (2024-2032) ($MN)
  • Table 24 Global Cloud Native 5G Core Market Outlook, By Enterprises (2024-2032) ($MN)
  • Table 25 Global Cloud Native 5G Core Market Outlook, By Government & Public Sector (2024-2032) ($MN)
  • Table 26 Global Cloud Native 5G Core Market Outlook, By Managed Service Providers (2024-2032) ($MN)
  • Table 27 Global Cloud Native 5G Core Market Outlook, By System Integrators (2024-2032) ($MN)
  • Table 28 Global Cloud Native 5G Core Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.