封面
市場調查報告書
商品編碼
1859713

基因遞送技術市場預測至2032年:按組件、工作流程、技術、部署類型、最終用戶和地區分類的全球分析

Gene Delivery Technology Market Forecasts to 2032 - Global Analysis By Component, Workflow, Technology, Mode of Delivery, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球基因轉殖技術市場預計到 2025 年將達到 41.6 億美元,到 2032 年將達到 90.3 億美元,預測期內複合年成長率為 11.7%。

基因遞送技術是指將遺傳物質(例如DNA、RNA或治療性基因)遞送到目標細胞以改變或控制其功能的各種方法和系統。基因遞送是基因治療的基石,它透過糾正缺陷基因或導入有益基因,能夠治療遺傳性疾病、癌症和感染疾病。基因傳遞可採用病毒載體(例如腺病毒和慢病毒)或非病毒方法(例如奈米顆粒、脂質體)以及物理技術(例如電穿孔)來實現。高效的基因傳遞能夠確保穩定性、標靶表達、最小化免疫反應和持續的治療效果,因此對於推進個人化醫療和生物醫學研究至關重要。

對個人化醫療的需求日益成長

精準醫療方法需要將遺傳物質標靶遞送至特定組織和細胞類型,以達到疾病修飾或調控的目的。該平台支援腫瘤學、罕見疾病和再生醫學領域的體外和體內遞送。與伴隨診斷和生物標記分析的整合可提高治療的特異性和患者療效。臨床試驗和轉化研究正在推動對可擴展、可客製化遞送系統的需求。這些趨勢正在推動該平台在個人化和基因治療生態系統中的廣泛應用。

高昂的研發和製造成本

基因遞送系統需要複雜的製劑純化和品管流程,以確保其安全性和有效性。細胞株工程和病毒載體生產的GMP合規性增加了營運成本和產品上市時間。小型公司和學術實驗室在獲得可擴展生產的資金和基礎設施方面面臨挑戰。監管要求和批次差異進一步增加了成本最佳化和平台可靠性的難度。這些限制因素持續阻礙分散式、預算敏感型治療計畫採用基因傳遞系統。

基因編輯技術的進步

CRISPR鹼基編輯和先導編輯需要將核酸酶引導RNA和修復模板精確且有效率地遞送到目標細胞中。相關平台支援模組化有效載荷設計,而組織特異性啟動子和誘導表達系統則增強了控制性和安全性。與脂質奈米顆粒電穿孔和病毒載體的整合拓展了整體治療方法的遞送選擇。細胞治療、再生醫學和罕見疾病領域對高保真度、可程式設計遞送基礎設施的需求日益成長。這些趨勢正在推動基因編輯遞送平台和應用的整體發展。

倫理和社會意識問題

對基因編輯脫靶效應和長期安全性的擔憂,使得相關人員的參與和臨床試驗招募變得複雜。公眾的懷疑和錯誤訊息降低了人們對基因療法和遞送平台的信任。監管機構面臨著如何在技術創新、倫理監管和社會影響之間取得平衡的挑戰。缺乏標準化的溝通和教育框架阻礙了透明度和知情同意。這些限制持續限制敏感治療領域中平台的應用和政策整合。

新冠疫情的影響:

疫情擾亂了基因轉移計畫的臨床試驗生產和供應鏈。封鎖和資源重新分配延緩了病患招募、載體生產和監管批准。然而,疫情後的復甦重點在於基因組醫學疫苗的創新和平台擴充性。用於mRNA遞送的脂質奈米顆粒和病毒載體的投資激增,以應用於感染疾病和腫瘤治療。消費者和醫療保健領域對基因技術和個人化醫療的認知度也隨之提升。這些轉變強化了對基因轉移基礎設施和轉化研究的長期投資。

預計在預測期內,病毒遞送系統(AAV、慢病毒)細分市場將成為最大的細分市場。

由於其高效的有效載荷能力和在基因治療項目中的臨床檢驗,病毒遞送系統(AAV、慢病毒)預計將在預測期內佔據最大的市場佔有率。該平台支援在多種適應症中實現穩定整合、瞬時表達和組織特異性靶向。 AAV載體具有低免疫抗原性和長期表達的優勢,而慢病毒則支持整合到分裂細胞中以實現持續治療。與可擴展的生產和監管框架的整合將有助於臨床應用和商業化。在罕見疾病腫瘤和眼科領域,對檢驗的高性能病毒載體的需求正在成長。

預計在預測期內,向量設計和最佳化細分市場將以最高的複合年成長率成長。

預計在預測期內,載體設計和最佳化領域將實現最高成長率。載體設計和最佳化平台支援啟動子工程、密碼子最佳化和有效載荷模組化,從而可根據細胞類型和疾病背景自訂遞送方案。人工智慧主導的設計、高通量篩檢以及合成生物學的整合加速了開發和性能最佳化。基因編輯細胞療法和疫苗應用對可自訂和可擴展的載體系統的需求日益成長。各公司正在將載體創新與監管合規性和臨床遞送策略相結合。這一趨勢正在推動以設計為中心的基因遞送平台和服務的發展。

佔比最大的地區:

預計在預測期內,北美將佔據最大的市場佔有率,這主要得益於其在基因轉移技術領域先進的生物技術生態系統所具備的監管和臨床基礎設施。企業和學術機構正在部署用於腫瘤學、罕見疾病和再生醫學計畫的整合化生產和分析平台。對載體工程GMP設施和轉化研究的投資,有助於擴充性和合規性。大型治療研發公司、合約研究組織(CRO)和監管機構的存在,推動了創新和標準化。各公司正在調整其交付策略,以符合FDA的指導方針、NIH的資助以及患者權益倡導舉措。這些因素共同推動了北美在基因轉殖商業化和臨床應用方面的領先地位。

複合年成長率最高的地區:

在預測期內,亞太地區預計將呈現最高的複合年成長率,這主要得益於基因組醫學和生物技術投資在區域經濟中的融合,旨在推動醫療保健現代化。中國、印度、日本和韓國等國家正在學術研究、公共衛生和治療藥物新興企業擴大基因轉移平台的規模。政府支持的計畫正在助力基因醫學領域的基礎設施建設、新創企業孵化和國際合作。本地企業正在提供經濟高效且符合當地疾病特徵和法律規範的解決方案。腫瘤學、罕見疾病和疫苗項目對可擴展且兼顧文化差異的交付基礎設施的需求日益成長。這些趨勢正在推動區域內基因轉殖創新和應用的成長。

免費客製化服務:

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對其他市場參與者(最多 3 家公司)進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 原始研究資料
    • 二手研究資料
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球基因轉殖技術市場(依組件分類)

  • 部署平台
  • 試劑和耗材
  • 設備和裝置
  • 軟體和分析工具
  • 服務

6. 全球基因轉殖技術市場(依工作流程分類)

  • 向量設計與最佳化
  • 製造和規模化
  • 品管與檢驗
  • 臨床前試驗
  • 臨床交付與管理
  • 其他工作流程

7. 全球基因轉殖技術市場(依技術分類)

  • 病毒遞送系統
    • 腺病毒
    • 慢病毒
    • 逆轉錄病毒
    • 腺結合病毒(AAV)
    • 單純皰疹病毒(HSV)
  • 非病毒遞送系統
    • 脂質奈米顆粒(LNPs)
    • 電穿孔
    • 顯微注射
    • 化學轉染法
  • 混合和新興技術
    • 外泌體介導的遞送
    • 細胞滲透性肽(CPP)
    • 奈米載體(金屬、聚合物、脂質基)
    • 微流體和實驗室晶片系統

8. 全球基因轉殖技術市場依實施類型分類

  • 注射給藥
  • 吸入式給藥
  • 局部配送
  • 口語交流
  • 其他實作方法

9. 全球基因轉殖技術市場(依最終用戶分類)

  • 製藥和生物技術公司
  • 學術研究機構
  • 合約研究組織(CRO)
  • 合約研發生產組織(CDMO)
  • 醫院和診所
  • 其他最終用戶

第10章 全球基因轉殖技術市場(依地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與併購
  • 新產品上市
  • 業務拓展
  • 其他關鍵策略

第12章 企業概況

  • Pfizer Inc.
  • Novartis AG
  • F. Hoffmann-La Roche Ltd.
  • Bayer AG
  • Amgen Inc.
  • Takara Bio Inc.
  • Becton, Dickinson and Company
  • Thermo Fisher Scientific Inc.
  • Lonza Group AG
  • Catalent Inc.
  • SIRION Biotech GmbH
  • GenScript Biotech Corporation
  • Genezen LLC
  • Oxford Biomedica plc
  • uniQure NV
Product Code: SMRC31937

According to Stratistics MRC, the Global Gene Delivery Technology Market is accounted for $4.16 billion in 2025 and is expected to reach $9.03 billion by 2032 growing at a CAGR of 11.7% during the forecast period. Gene delivery technology refers to the methods and systems used to transport genetic material-such as DNA, RNA, or therapeutic genes-into target cells to modify or regulate their function. It is a cornerstone of gene therapy, enabling treatment of genetic disorders, cancers, and infectious diseases by correcting defective genes or introducing beneficial ones. Delivery can be achieved using viral vectors, like adenoviruses or lentiviruses, or non-viral methods, such as nanoparticles, liposomes, and physical techniques like electroporation. Efficient gene delivery ensures stability, targeted expression, minimal immune response, and sustained therapeutic effect, making it critical for advancing personalized medicine and biomedical research.

Market Dynamics:

Driver:

Increasing demand for personalized medicine

Precision medicine initiatives require targeted delivery of genetic material to specific tissues and cell types for disease correction and modulation. Platforms support ex vivo and in vivo delivery across oncology rare diseases and regenerative medicine. Integration with companion diagnostics and biomarker profiling enhances treatment specificity and patient outcomes. Demand for scalable and customizable delivery systems is rising across clinical trials and translational research. These dynamics are propelling platform deployment across personalized and gene-based therapeutic ecosystems.

Restraint:

High development and manufacturing costs

Gene delivery systems require complex formulation purification and quality control processes to ensure safety and efficacy. Viral vector production cell line engineering and GMP compliance add to operational overhead and time-to-market. Smaller firms and academic labs face challenges in securing funding and infrastructure for scalable manufacturing. Regulatory requirements and batch variability further complicate cost optimization and platform reliability. These constraints continue to hinder adoption across decentralized and budget-sensitive therapeutic programs.

Opportunity:

Advancements in gene editing technologies

CRISPR base editing and prime editing require precise and efficient delivery of nucleases guide RNAs and repair templates to target cells. Platforms support modular payload design tissue-specific promoters and inducible expression systems for enhanced control and safety. Integration with lipid nanoparticles electroporation and viral vectors expands delivery options across therapeutic modalities. Demand for high-fidelity and programmable delivery infrastructure is rising across cell therapy regenerative medicine and rare disease pipelines. These trends are fostering growth across gene editing-enabled delivery platforms and applications.

Threat:

Ethical and public perception issues

Concerns around germline editing off-target effects and long-term safety complicate stakeholder engagement and clinical trial recruitment. Public skepticism and misinformation degrade trust in genetic therapies and delivery platforms. Regulatory bodies face challenges in balancing innovation with ethical oversight and societal impact. Lack of standardized communication and education frameworks hampers transparency and informed consent. These limitations continue to constrain platform adoption and policy integration across sensitive therapeutic areas.

Covid-19 Impact:

The pandemic disrupted clinical trials manufacturing and supply chains across gene delivery programs. Lockdowns and resource reallocation delayed patient recruitment vector production and regulatory review. However post-pandemic recovery emphasized genomic medicine vaccine innovation and platform scalability. Investment in mRNA delivery lipid nanoparticles and viral vectors surged across infectious disease and oncology applications. Public awareness of genetic technologies and personalized medicine increased across consumer and healthcare segments. These shifts are reinforcing long-term investment in gene delivery infrastructure and translational research.

The viral delivery systems (AAV, Lentivirus) segment is expected to be the largest during the forecast period

The viral delivery systems (AAV, Lentivirus) segment is expected to account for the largest market share during the forecast period due to their efficiency payload capacity and clinical validation across gene therapy programs. Platforms support stable integration transient expression and tissue-specific targeting across diverse indications. AAV vectors offer low immunogenicity and long-term expression while Lentivirus supports integration into dividing cells for durable correction. Integration with scalable manufacturing and regulatory frameworks enhances clinical readiness and commercialization. Demand for validated and high-performance viral vectors is rising across rare disease oncology and ophthalmology pipelines.

The vector design & optimization segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the vector design & optimization segment is predicted to witness the highest growth rate as therapeutic developers seek enhanced specificity safety and expression control across delivery platforms. Platforms support promoter engineering codon optimization and payload modularity to tailor delivery across cell types and disease contexts. Integration with AI-driven design high-throughput screening and synthetic biology accelerates development and performance tuning. Demand for customizable and scalable vector systems is rising across gene editing cell therapy and vaccine applications. Firms are aligning vector innovation with regulatory compliance and clinical translation strategies. These dynamics are accelerating growth across design-centric gene delivery platforms and services.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to its advanced biotech ecosystem regulatory engagement and clinical infrastructure across gene delivery technologies. Enterprises and academic institutions deploy platforms across oncology rare disease and regenerative medicine programs with integrated manufacturing and analytics. Investment in vector engineering GMP facilities and translational research supports scalability and compliance. Presence of leading therapeutic developers CROs and regulatory bodies drives innovation and standardization. Firms align delivery strategies with FDA guidance NIH funding and patient advocacy initiatives. These factors are propelling North America's leadership in gene delivery commercialization and clinical adoption.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as healthcare modernization genomic medicine and biotech investment converge across regional economies. Countries like China India Japan and South Korea scale gene delivery platforms across academic research public health and therapeutic development. Government-backed programs support infrastructure development startup incubation and international collaboration across genetic medicine. Local firms offer cost-effective and regionally adapted solutions tailored to disease profiles and regulatory frameworks. Demand for scalable and culturally aligned delivery infrastructure is rising across oncology rare disease and vaccine programs. These trends are accelerating regional growth across gene delivery innovation and deployment.

Key players in the market

Some of the key players in Gene Delivery Technology Market include Pfizer Inc., Novartis AG, F. Hoffmann-La Roche Ltd., Bayer AG, Amgen Inc., Takara Bio Inc., Becton, Dickinson and Company, Thermo Fisher Scientific Inc., Lonza Group AG, Catalent Inc., SIRION Biotech GmbH, GenScript Biotech Corporation, Genezen LLC, Oxford Biomedica plc and uniQure N.V.

Key Developments:

In October 2025, Novartis pledged over $17 billion in licensing and acquisition deals, including strategic investments in Monte Rosa, Arvinas, and Arrowhead Pharmaceuticals. These deals expand Novartis's gene delivery capabilities in protein degradation, RNA interference, and targeted payload delivery, reinforcing its leadership in next-gen therapeutic platforms.

In October 2025, Pfizer was highlighted in the Cell and Gene Therapy Drug Delivery Market Report as a key innovator alongside Novartis and Amgen. The company continues to collaborate with biotech firms and academic institutions to enhance blood-based biomarker integration and delivery vector optimization, supporting early-stage detection and precision targeting in gene therapy applications.

Components Covered:

  • Delivery Platforms
  • Reagents & Consumables
  • Instruments & Devices
  • Software & Analytical Tools
  • Services

Workflows Covered:

  • Vector Design & Optimization
  • Manufacturing & Scale-Up
  • Quality Control & Validation
  • Preclinical Testing
  • Clinical Delivery & Administration
  • Other Workflows

Technologies Covered:

  • Viral Delivery Systems
  • Non-Viral Delivery Systems
  • Hybrid & Emerging Technologies

Mode of Deliveries Covered:

  • Injectable Delivery
  • Inhalable Delivery
  • Topical Delivery
  • Oral Delivery
  • Other Mode of Deliveries

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic & Research Institutions
  • Contract Research Organizations (CROs)
  • Contract Development & Manufacturing Organizations (CDMOs)
  • Hospitals & Clinics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Gene Delivery Technology Market, By Component

  • 5.1 Introduction
  • 5.2 Delivery Platforms
  • 5.3 Reagents & Consumables
  • 5.4 Instruments & Devices
  • 5.5 Software & Analytical Tools
  • 5.6 Services

6 Global Gene Delivery Technology Market, By Workflow

  • 6.1 Introduction
  • 6.2 Vector Design & Optimization
  • 6.3 Manufacturing & Scale-Up
  • 6.4 Quality Control & Validation
  • 6.5 Preclinical Testing
  • 6.6 Clinical Delivery & Administration
  • 6.7 Other Workflows

7 Global Gene Delivery Technology Market, By Technology

  • 7.1 Introduction
  • 7.2 Viral Delivery Systems
    • 7.2.1 Adenovirus
    • 7.2.2 Lentivirus
    • 7.2.3 Retrovirus
    • 7.2.4 Adeno-Associated Virus (AAV)
    • 7.2.5 Herpes Simplex Virus (HSV)
  • 7.3 Non-Viral Delivery Systems
    • 7.3.1 Lipid Nanoparticles (LNPs)
    • 7.3.2 Electroporation
    • 7.3.3 Microinjection
    • 7.3.4 Chemical Transfection Methods
  • 7.4 Hybrid & Emerging Technologies
    • 7.4.1 Exosome-Mediated Delivery
    • 7.4.2 Cell-Penetrating Peptides (CPPs)
    • 7.4.3 Nanocarriers (Metallic, Polymeric, Lipid-Based)
    • 7.4.4 Microfluidic & Lab-on-Chip Systems

8 Global Gene Delivery Technology Market, By Mode of Delivery

  • 8.1 Introduction
  • 8.2 Injectable Delivery
  • 8.3 Inhalable Delivery
  • 8.4 Topical Delivery
  • 8.5 Oral Delivery
  • 8.6 Other Mode of Deliveries

9 Global Gene Delivery Technology Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Academic & Research Institutions
  • 9.4 Contract Research Organizations (CROs)
  • 9.5 Contract Development & Manufacturing Organizations (CDMOs)
  • 9.6 Hospitals & Clinics
  • 9.7 Other End Users

10 Global Gene Delivery Technology Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Pfizer Inc.
  • 12.2 Novartis AG
  • 12.3 F. Hoffmann-La Roche Ltd.
  • 12.4 Bayer AG
  • 12.5 Amgen Inc.
  • 12.6 Takara Bio Inc.
  • 12.7 Becton, Dickinson and Company
  • 12.8 Thermo Fisher Scientific Inc.
  • 12.9 Lonza Group AG
  • 12.10 Catalent Inc.
  • 12.11 SIRION Biotech GmbH
  • 12.12 GenScript Biotech Corporation
  • 12.13 Genezen LLC
  • 12.14 Oxford Biomedica plc
  • 12.15 uniQure N.V.

List of Tables

  • Table 1 Global Gene Delivery Technology Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Gene Delivery Technology Market Outlook, Component (2024-2032) ($MN)
  • Table 3 Global Gene Delivery Technology Market Outlook, Delivery Platforms (2024-2032) ($MN)
  • Table 4 Global Gene Delivery Technology Market Outlook, Reagents & Consumables (2024-2032) ($MN)
  • Table 5 Global Gene Delivery Technology Market Outlook, Instruments & Devices (2024-2032) ($MN)
  • Table 6 Global Gene Delivery Technology Market Outlook, Software & Analytical Tools (2024-2032) ($MN)
  • Table 7 Global Gene Delivery Technology Market Outlook, Services (2024-2032) ($MN)
  • Table 8 Global Gene Delivery Technology Market Outlook, Workflow (2024-2032) ($MN)
  • Table 9 Global Gene Delivery Technology Market Outlook, Vector Design & Optimization (2024-2032) ($MN)
  • Table 10 Global Gene Delivery Technology Market Outlook, Manufacturing & Scale-Up (2024-2032) ($MN)
  • Table 11 Global Gene Delivery Technology Market Outlook, Quality Control & Validation (2024-2032) ($MN)
  • Table 12 Global Gene Delivery Technology Market Outlook, Preclinical Testing (2024-2032) ($MN)
  • Table 13 Global Gene Delivery Technology Market Outlook, Clinical Delivery & Administration (2024-2032) ($MN)
  • Table 14 Global Gene Delivery Technology Market Outlook, Other Workflows (2024-2032) ($MN)
  • Table 15 Global Gene Delivery Technology Market Outlook, Technology (2024-2032) ($MN)
  • Table 16 Global Gene Delivery Technology Market Outlook, Viral Delivery Systems (2024-2032) ($MN)
  • Table 17 Global Gene Delivery Technology Market Outlook, Adenovirus (2024-2032) ($MN)
  • Table 18 Global Gene Delivery Technology Market Outlook, Lentivirus (2024-2032) ($MN)
  • Table 19 Global Gene Delivery Technology Market Outlook, Retrovirus (2024-2032) ($MN)
  • Table 20 Global Gene Delivery Technology Market Outlook, Adeno-Associated Virus (AAV) (2024-2032) ($MN)
  • Table 21 Global Gene Delivery Technology Market Outlook, Herpes Simplex Virus (HSV) (2024-2032) ($MN)
  • Table 22 Global Gene Delivery Technology Market Outlook, Non-Viral Delivery Systems (2024-2032) ($MN)
  • Table 23 Global Gene Delivery Technology Market Outlook, Lipid Nanoparticles (LNPs) (2024-2032) ($MN)
  • Table 24 Global Gene Delivery Technology Market Outlook, Electroporation (2024-2032) ($MN)
  • Table 25 Global Gene Delivery Technology Market Outlook, Microinjection (2024-2032) ($MN)
  • Table 26 Global Gene Delivery Technology Market Outlook, Chemical Transfection Methods (2024-2032) ($MN)
  • Table 27 Global Gene Delivery Technology Market Outlook, Hybrid & Emerging Technologies (2024-2032) ($MN)
  • Table 28 Global Gene Delivery Technology Market Outlook, Exosome-Mediated Delivery (2024-2032) ($MN)
  • Table 29 Global Gene Delivery Technology Market Outlook, Cell-Penetrating Peptides (CPPs) (2024-2032) ($MN)
  • Table 30 Global Gene Delivery Technology Market Outlook, Nanocarriers (Metallic, Polymeric, Lipid-Based) (2024-2032) ($MN)
  • Table 31 Global Gene Delivery Technology Market Outlook, Microfluidic & Lab-on-Chip Systems (2024-2032) ($MN)
  • Table 32 Global Gene Delivery Technology Market Outlook, Mode of Delivery (2024-2032) ($MN)
  • Table 33 Global Gene Delivery Technology Market Outlook, Injectable Delivery (2024-2032) ($MN)
  • Table 34 Global Gene Delivery Technology Market Outlook, Inhalable Delivery (2024-2032) ($MN)
  • Table 35 Global Gene Delivery Technology Market Outlook, Topical Delivery (2024-2032) ($MN)
  • Table 36 Global Gene Delivery Technology Market Outlook, Oral Delivery (2024-2032) ($MN)
  • Table 37 Global Gene Delivery Technology Market Outlook, Other Mode of Deliveries (2024-2032) ($MN)
  • Table 38 Global Gene Delivery Technology Market Outlook, End User (2024-2032) ($MN)
  • Table 39 Global Gene Delivery Technology Market Outlook, Pharmaceutical & Biotechnology Companies (2024-2032) ($MN)
  • Table 40 Global Gene Delivery Technology Market Outlook, Academic & Research Institutions (2024-2032) ($MN)
  • Table 41 Global Gene Delivery Technology Market Outlook, Contract Research Organizations (CROs) (2024-2032) ($MN)
  • Table 42 Global Gene Delivery Technology Market Outlook, Contract Development & Manufacturing Organizations (CDMOs) (2024-2032) ($MN)
  • Table 43 Global Gene Delivery Technology Market Outlook, Hospitals & Clinics (2024-2032) ($MN)
  • Table 44 Global Gene Delivery Technology Market Outlook, Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.