封面
市場調查報告書
商品編碼
1857053

全球機器學習遺忘解決方案市場:預測至 2032 年—按解決方案類型、遺忘方法、部署方式、組織規模、應用程式、最終用戶和地區進行分析

Machine Unlearning Solutions Market Forecasts to 2032 - Global Analysis By Solution Type, Unlearning Technique, Deployment Mode, Organization Size, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球機器學習反學習解決方案市場預計到 2025 年將達到 1.5 億美元,到 2032 年將達到 27.3 億美元,預測期內複合年成長率為 51.2%。

機器學習遺忘解決方案旨在無需重新訓練即可從已訓練的機器學習模型中移除特定資料點。這些解決方案對於隱私法規、偏差緩解和糾正錯誤資料至關重要,它們使模型能夠「遺忘」。隨著資料隱私法律的日益完善和人工智慧倫理的日益受到重視,這項技術對於維護合規、準確、公平且可高效更新和糾正的人工智慧系統至關重要。

日益嚴格的數據隱私法規要求刪除數據

隨著 GDPR 和 CCPA 等全球資料隱私法律以及各國新法規的興起,企業必須應要求刪除個人資料。這推動了對機器學習「遺忘」解決方案的需求,該方案旨在確保人工智慧模型合規,而無需從頭開始重新訓練。此外,金融、醫療保健和社群媒體等處理敏感資訊的行業正在採用自動化「遺忘」流程,以降低法律風險、維護消費者信任並支持符合倫理的人工智慧舉措。合規要求持續推動全球此類解決方案的普及。

性能對模型精度和效率的影響

機器學習的遺忘操作可能會降低模型效能,影響準確性和計算效率。從已訓練的模型中移除資料點可能會引入資料不一致或需要部分重新訓練,從而增加處理時間和資源消費量。此外,複雜的遺忘演算法可能會對IT基礎設施造成壓力,限制小規模組織的採用。平衡合規性和營運效率仍然是一項關鍵挑戰,因為組織必須在保持模型可靠性的同時,有效清除敏感數據,並且不能中斷現有的工作流程。

與人工智慧管治和MLOps平台整合

將機器學習遺忘解決方案與人工智慧管治和機器學習運作 (MLOps) 框架相整合,可簡化合規性、監控和模型生命週期管理。此類整合可實現資料刪除請求自動化、審核追蹤和版本控制,從而減少人工監管。此外,組織還可以將遺忘與模型可解釋性和公平性工具結合,提高透明度和信任度。這些協同效應為提供整合解決方案的供應商創造了市場機遇,這些解決方案能夠簡化監管合規性並支援各行業的穩健人工智慧營運。

資料刪除不徹底可能會造成合規風險。

部分或無效的去訓練會導致殘留數據,使組織面臨法律處罰、監管審查和聲譽損害。不完整的去訓練會削弱信任,降低人工智慧模型的可靠性,尤其是在涉及敏感個人或財務資訊的領域。此外,複雜的模型架構使得完全去訓練變得困難,需要持續的監控和檢驗。

新冠疫情的影響:

新冠疫情加速了各產業的數位轉型,並推動了人工智慧(AI)的廣泛應用,同時也加劇了人們對資料隱私的擔憂。遠距辦公、雲端遷移和線上服務產生了大量的個人數據,凸顯了機器學習「遺忘」解決方案的必要性。為了在快速部署過程中保護敏感訊息,各組織優先考慮合規自動化和安全的AI模型管理。這促使企業加大對AI管治框架和整合「遺忘」工具的投資,以確保合規性並增強對數位服務的信任。

預計在預測期內,遺忘學習的群體規模將最大。

預計在預測期內,近似遺忘技術將佔據最大的市場佔有率。企業之所以青睞近似遺忘技術,是因為它既能降低重新訓練的成本和時間,又能符合隱私法規。該技術適用於各種人工智慧架構,因此無論大中小型企業都能採用。此外,供應商正不斷最佳化這些技術,以提高準確性、審核以及與現有機器學習運維流程的整合度,從而鞏固其市場領先地位。高效性、擴充性和合規性這三者的完美結合,正推動該技術在機器學習遺忘解決方案領域佔據主導地位。

預計在預測期內,雲端基礎的細分市場將以最高的複合年成長率成長。

預計在預測期內,雲端基礎方案將實現最高成長率。雲端基礎機器學習解決方案具有靈活性、擴充性和更低的初始成本,以便於各種規模的組織快速部署。它們提供集中管理、自動更新以及與雲端人工智慧服務的整合,從而提高營運效率。此外,雲端傳輸支援全球訪問,並允許在數據處理或學習需求激增時實現無縫擴展。組織可以受益於基礎設施負擔的減輕和基於訂閱的定價模式,這使得雲端基礎解決方案成為市場中成長最快的細分領域。

佔比最高的地區:

在預測期內,北美預計將佔據最大的市場佔有率,這主要得益於其嚴格的隱私法規、早期人工智慧應用以及眾多主要技術供應商的存在。醫療保健、金融和科技業的公司正擴大採用機器學習反學習解決方案來滿足合規性要求。此外,強大的IT基礎設施、雲端技術的廣泛應用以及高額的研發投入也為先進反學習技術的快速部署和整合提供了支援。這些因素共同促成了北美成為機器學習反學習解決方案最大的區域市場。

複合年成長率最高的地區:

在預測期內,由於包括GDPR在內的嚴格資料保護條例以及社會對隱私權日益增強的意識,歐洲預計將呈現最高的複合年成長率。各組織正在採用機器學習「遺忘」技術,以在遵守嚴格法律義務的同時保持人工智慧的效能。此外,該地區對人工智慧研究、雲端基礎設施和專注於隱私的新興企業的投資正在推動創新和應用。政府、企業和供應商之間的合作舉措正在加速可擴展「遺忘」解決方案的部署,使歐洲成為預測期內成長最快的區域市場。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球機器學習反學習解決方案市場(按解決方案類型分類)

  • 軟體/工具、平台
    • 獨立式遺忘學習軟體
    • 整合式MLOps/模型管治平台
  • 服務
    • 專業服務
      • 諮詢和實施
      • 支援和維護
    • 託管服務/遺忘即服務 (UaaS)

6. 全球機器學習反學習解決方案市場(以反學習方法論分類)

  • 精準的遺忘
  • 近似於遺忘
    • 影響函數型方法
    • 基於最佳化的方法
    • 其他近似演算法

7. 全球機器學習反學習解決方案市場(以部署方式分類)

  • 雲端基礎的
  • 本地部署

8. 全球機器學習反學習解決方案市場(按組織規模分類)

  • 主要企業
  • 小型企業

9. 全球機器學習反學習解決方案市場(按類型分類)

  • 減少偏見和促進公平
  • 安全與攻擊緩解
  • 遵守資料隱私法規
  • 模型生命週期管理和效能最佳化
  • 其他用途

第10章:全球機器學習反學習解決方案市場(以最終用戶分類)

  • 銀行、金融服務和保險 (BFSI)
  • 醫學與生命科​​學
  • 資訊科技/通訊
  • 零售與電子商務
  • 政府/公共部門
  • 汽車/製造業
  • 媒體與娛樂
  • 其他最終用戶

第11章 全球機器學習反學習解決方案市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第13章:公司簡介

  • Amazon Web Services, Inc.
  • Baidu, Inc.
  • Google LLC
  • H2O.ai, Inc.
  • Hewlett-Packard Enterprise Development LP
  • Intel Corporation
  • IBM Corporation
  • Microsoft Corporation
  • SAS Institute Inc.
  • SAP SE
  • DataRobot, Inc.
  • C3.ai, Inc.
  • OpenAI, Inc.
  • Graphcore Ltd.
  • SUALAB Inc.
  • Megvii Technology Limited
  • Elliptic Labs Inc.
  • Handshakes Inc.
  • IntelliVIX Inc.
  • Twigfarm Inc.
Product Code: SMRC31918

According to Stratistics MRC, the Global Machine Unlearning Solutions Market is accounted for $0.15 billion in 2025 and is expected to reach $2.73 billion by 2032 growing at a CAGR of 51.2% during the forecast period. Machine unlearning solutions address the need to remove specific data points from trained machine learning models without full retraining. Crucial for privacy regulations, bias mitigation, and correcting erroneous data, these solutions allow models to "forget." As data privacy laws tighten and AI ethics gain prominence, this technology is vital for maintaining compliant, accurate, and fair AI systems, ensuring they can be efficiently updated and corrected.

Market Dynamics:

Driver:

Increasing data privacy regulations requiring data deletion

The rise of global data privacy laws such as GDPR, CCPA, and emerging national regulations compels organizations to delete personal data upon request. This drives demand for machine unlearning solutions that ensure AI models comply without retraining from scratch. Furthermore, industries handling sensitive information, including finance, healthcares, and social media, are adopting automated unlearning processes to mitigate legal risks, maintain consumer trust, and support ethical AI initiatives. Compliance obligations continue to expand adoption worldwide.

Restraint:

Performance impact on model accuracy and efficiency

Implementing machine unlearning can degrade model performance, affecting accuracy and computational efficiency. Removing data points from trained models may introduce inconsistencies or require partial retraining, which increases processing time and resource consumption. Additionally, complex unlearning algorithms may strain IT infrastructure, deterring smaller organizations from adoption. Balancing regulatory compliance with operational efficiency remains a significant challenge, as organizations must maintain model reliability while ensuring sensitive data is effectively purged without disrupting existing workflows.

Opportunity:

Integration with AI governance and MLOps platforms

Machine unlearning solutions can be integrated with AI governance and MLOps frameworks to streamline compliance, monitoring, and model lifecycle management. Such integration enables automated data deletion requests, audit trails, and version control, reducing manual oversight. Moreover, organizations can combine unlearning with model interpretability and fairness tools, enhancing transparency and trust. This synergy creates market opportunities for vendors offering unified solutions that simplify regulatory adherence while supporting robust AI operations across industries.

Threat:

Potential for incomplete data removal creating compliance risks

Partial or ineffective unlearning may leave residual data, exposing organizations to legal penalties, regulatory scrutiny, and reputational damage. Incomplete removal can compromise trust and reduce the reliability of AI models, especially in sectors handling sensitive personal or financial information. Additionally, complex model architectures make thorough deletion challenging, requiring ongoing monitoring and validation.

Covid-19 Impact:

The Covid-19 pandemic accelerated digital transformation, increasing AI adoption across sectors while simultaneously amplifying concerns about data privacy. Remote work, cloud migration, and online services generated higher volumes of personal data, highlighting the need for machine unlearning solutions. Organizations prioritized compliance automation and secure AI model management to protect sensitive information amid rapid deployment. This led to accelerated investments in unlearning tools integrated with AI governance frameworks, ensuring regulatory adherence and reinforcing trust in digital services.

The approximate unlearning segment is expected to be the largest during the forecast period

The approximate unlearning segment is expected to account for the largest market share during the forecast period. Organizations favor approximate unlearning because it reduces retraining costs and time while achieving compliance with privacy laws. Its applicability across diverse AI architectures enables adoption by both large enterprises and SMEs. Moreover, vendors increasingly optimize these methods for accuracy retention, auditability, and integration with existing MLOps pipelines, reinforcing their market leadership. The combination of efficiency, scalability, and regulatory alignment ensures the segment dominates the machine unlearning solutions landscape.

The cloud-based segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cloud-based segment is predicted to witness the highest growth rate. Cloud-based machine unlearning solutions offer flexibility, scalability, and lower upfront costs, facilitating rapid deployment for organizations of all sizes. They provide centralized management, automated updates, and integration with cloud AI services, enhancing operational efficiency. Additionally, cloud delivery supports global accessibility and seamless scaling during spikes in data processing or unlearning requests. Organizations benefit from reduced infrastructure burden and subscription-based pricing, making cloud-based solutions the fastest-growing segment in the market.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market sharedue to stringent privacy regulations, early AI adoption, and the presence of major technology vendors. Enterprises across healthcare, finance, and technology sectors are increasingly implementing machine unlearning solutions to meet compliance requirements. Furthermore, strong IT infrastructure, cloud adoption, and high R&D investment support rapid deployment and integration of advanced unlearning techniques. These factors collectively position North America as the largest regional market for machine unlearning solutions.

Region with highest CAGR:

Over the forecast period, the Europe region is anticipated to exhibit the highest CAGR driven by strict data protection regulations, including GDPR, and growing public awareness of privacy rights. Organizations are adopting machine unlearning to comply with rigorous legal mandates while preserving AI performance. Moreover, the region's investment in AI research, cloud infrastructure, and privacy-centric startups fosters innovation and adoption. Collaborative initiatives between governments, enterprises, and vendors accelerate deployment of scalable unlearning solutions, making Europe the fastest-growing regional market in the forecast period.

Key players in the market

Some of the key players in Machine Unlearning Solutions Market include Amazon Web Services, Inc., Baidu, Inc., Google LLC, H2O.ai, Inc., Hewlett-Packard Enterprise Development LP, Intel Corporation, IBM Corporation, Microsoft Corporation, SAS Institute Inc., SAP SE, DataRobot, Inc., C3.ai, Inc., OpenAI, Inc., Graphcore Ltd., SUALAB Inc., Megvii Technology Limited, Elliptic Labs Inc., Handshakes Inc., IntelliVIX Inc., and Twigfarm Inc.

Key Developments:

In October 2025, Google for Startups announced its Gemini Founders Forum, including Hirundo, a startup powered by Google Cloud's AI stack focused on machine unlearning. This indicates Google's ongoing support for unlearning R&D across its DeepMind and Gemini ecosystems.

In October 2025, Microsoft's Azure forum outlined best practices for approximate unlearning, recommending parameter-efficient fine-tuning and edit tracking. Microsoft research groups continue publishing policy and technical analyses under projects like "Lifelong Model Editing" and "Physics of AGI".

In October 2024, IBM published research on "Split, Unlearn, Merge" (SPUNGE), a framework designed to amplify the effectiveness of unlearning methods in LLMs. SPUNGE leverages data attributes to enhance unlearning performance, aiming to improve model safety by removing harmful behaviors and knowledge.

Solution Types Covered:

  • Software/Tools & Platforms
  • Services

Unlearning Techniques Covered:

  • Exact Unlearning
  • Approximate Unlearning

Deployment Modes Covered:

  • Cloud-based
  • On-premises

Organization Sizes Covered:

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

Applications Covered:

  • Bias and Fairness Mitigation
  • Security and Attack Mitigation
  • Compliance with Data Privacy Regulations
  • Model Lifecycle Management and Performance Optimization
  • Other Applications

End Users Covered:

  • BFSI (Banking, Financial Services, and Insurance)
  • Healthcare & Life Sciences
  • IT & Telecommunications
  • Retail & E-commerce
  • Government & Public Sector
  • Automotive & Manufacturing
  • Media & Entertainment
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Machine Unlearning Solutions Market, By Solution Type

  • 5.1 Introduction
  • 5.2 Software/Tools & Platforms
    • 5.2.1 Standalone Unlearning Software
    • 5.2.2 Integrated MLOps/Model Governance Platforms
  • 5.3 Services
    • 5.3.1 Professional Services
      • 5.3.1.1 Consulting & Implementation
      • 5.3.1.2 Support & Maintenance
    • 5.3.2 Managed Services / Unlearning-as-a-Service (UaaS)

6 Global Machine Unlearning Solutions Market, By Unlearning Technique

  • 6.1 Introduction
  • 6.2 Exact Unlearning
  • 6.3 Approximate Unlearning
    • 6.3.1 Influence Function-based Methods
    • 6.3.2 Optimization-based Methods
    • 6.3.3 Other Approximation Algorithms

7 Global Machine Unlearning Solutions Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 Cloud-based
  • 7.3 On-premises

8 Global Machine Unlearning Solutions Market, By Organization Size

  • 8.1 Introduction
  • 8.2 Large Enterprises
  • 8.3 Small and Medium-sized Enterprises (SMEs)

9 Global Machine Unlearning Solutions Market, By Application

  • 9.1 Introduction
  • 9.2 Bias and Fairness Mitigation
  • 9.3 Security and Attack Mitigation
  • 9.4 Compliance with Data Privacy Regulations
  • 9.5 Model Lifecycle Management and Performance Optimization
  • 9.6 Other Applications

10 Global Machine Unlearning Solutions Market, By End User

  • 10.1 Introduction
  • 10.2 BFSI (Banking, Financial Services, and Insurance)
  • 10.3 Healthcare & Life Sciences
  • 10.4 IT & Telecommunications
  • 10.5 Retail & E-commerce
  • 10.6 Government & Public Sector
  • 10.7 Automotive & Manufacturing
  • 10.8 Media & Entertainment
  • 10.9 Other End Users

11 Global Machine Unlearning Solutions Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Amazon Web Services, Inc.
  • 13.2 Baidu, Inc.
  • 13.3 Google LLC
  • 13.4 H2O.ai, Inc.
  • 13.5 Hewlett-Packard Enterprise Development LP
  • 13.6 Intel Corporation
  • 13.7 IBM Corporation
  • 13.8 Microsoft Corporation
  • 13.9 SAS Institute Inc.
  • 13.10 SAP SE
  • 13.11 DataRobot, Inc.
  • 13.12 C3.ai, Inc.
  • 13.13 OpenAI, Inc.
  • 13.14 Graphcore Ltd.
  • 13.15 SUALAB Inc.
  • 13.16 Megvii Technology Limited
  • 13.17 Elliptic Labs Inc.
  • 13.18 Handshakes Inc.
  • 13.19 IntelliVIX Inc.
  • 13.20 Twigfarm Inc.

List of Tables

  • Table 1 Global Machine Unlearning Solutions Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Machine Unlearning Solutions Market Outlook, By Solution Type (2024-2032) ($MN)
  • Table 3 Global Machine Unlearning Solutions Market Outlook, By Software/Tools & Platforms (2024-2032) ($MN)
  • Table 4 Global Machine Unlearning Solutions Market Outlook, By Standalone Unlearning Software (2024-2032) ($MN)
  • Table 5 Global Machine Unlearning Solutions Market Outlook, By Integrated MLOps/Model Governance Platforms (2024-2032) ($MN)
  • Table 6 Global Machine Unlearning Solutions Market Outlook, By Services (2024-2032) ($MN)
  • Table 7 Global Machine Unlearning Solutions Market Outlook, By Professional Services (2024-2032) ($MN)
  • Table 8 Global Machine Unlearning Solutions Market Outlook, By Consulting & Implementation (2024-2032) ($MN)
  • Table 9 Global Machine Unlearning Solutions Market Outlook, By Support & Maintenance (2024-2032) ($MN)
  • Table 10 Global Machine Unlearning Solutions Market Outlook, By Managed Services / Unlearning-as-a-Service (UaaS) (2024-2032) ($MN)
  • Table 11 Global Machine Unlearning Solutions Market Outlook, By Unlearning Technique (2024-2032) ($MN)
  • Table 12 Global Machine Unlearning Solutions Market Outlook, By Exact Unlearning (2024-2032) ($MN)
  • Table 13 Global Machine Unlearning Solutions Market Outlook, By Approximate Unlearning (2024-2032) ($MN)
  • Table 14 Global Machine Unlearning Solutions Market Outlook, By Influence Function-based Methods (2024-2032) ($MN)
  • Table 15 Global Machine Unlearning Solutions Market Outlook, By Optimization-based Methods (2024-2032) ($MN)
  • Table 16 Global Machine Unlearning Solutions Market Outlook, By Other Approximation Algorithms (2024-2032) ($MN)
  • Table 17 Global Machine Unlearning Solutions Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 18 Global Machine Unlearning Solutions Market Outlook, By Cloud-based (2024-2032) ($MN)
  • Table 19 Global Machine Unlearning Solutions Market Outlook, By On-premises (2024-2032) ($MN)
  • Table 20 Global Machine Unlearning Solutions Market Outlook, By Organization Size (2024-2032) ($MN)
  • Table 21 Global Machine Unlearning Solutions Market Outlook, By Large Enterprises (2024-2032) ($MN)
  • Table 22 Global Machine Unlearning Solutions Market Outlook, By Small and Medium-sized Enterprises (SMEs) (2024-2032) ($MN)
  • Table 23 Global Machine Unlearning Solutions Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global Machine Unlearning Solutions Market Outlook, By Bias and Fairness Mitigation (2024-2032) ($MN)
  • Table 25 Global Machine Unlearning Solutions Market Outlook, By Security and Attack Mitigation (2024-2032) ($MN)
  • Table 26 Global Machine Unlearning Solutions Market Outlook, By Compliance with Data Privacy Regulations (2024-2032) ($MN)
  • Table 27 Global Machine Unlearning Solutions Market Outlook, By Model Lifecycle Management and Performance Optimization (2024-2032) ($MN)
  • Table 28 Global Machine Unlearning Solutions Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 29 Global Machine Unlearning Solutions Market Outlook, By End User (2024-2032) ($MN)
  • Table 30 Global Machine Unlearning Solutions Market Outlook, By BFSI (Banking, Financial Services, and Insurance) (2024-2032) ($MN)
  • Table 31 Global Machine Unlearning Solutions Market Outlook, By Healthcare & Life Sciences (2024-2032) ($MN)
  • Table 32 Global Machine Unlearning Solutions Market Outlook, By IT & Telecommunications (2024-2032) ($MN)
  • Table 33 Global Machine Unlearning Solutions Market Outlook, By Retail & E-commerce (2024-2032) ($MN)
  • Table 34 Global Machine Unlearning Solutions Market Outlook, By Government & Public Sector (2024-2032) ($MN)
  • Table 35 Global Machine Unlearning Solutions Market Outlook, By Automotive & Manufacturing (2024-2032) ($MN)
  • Table 36 Global Machine Unlearning Solutions Market Outlook, By Media & Entertainment (2024-2032) ($MN)
  • Table 37 Global Machine Unlearning Solutions Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.