封面
市場調查報告書
商品編碼
1857032

全球石墨烯電子產品市場:預測(至2032年)-按材料類型、製造方法、應用、最終用戶和地區分類的分析

Graphene-Based Electronics Market Forecasts to 2032 - Global Analysis By Material Type, Manufacturing Method, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,預計到 2025 年,全球石墨烯電子產品市場規模將達到 8.736 億美元,到 2032 年將達到 72.14 億美元,預測期內複合年成長率將達到 35.2%。

基於石墨烯的電子元件利用石墨烯的導電性、柔韌性和熱性能,實現了高頻元件、感測器、透明電極和軟性電路的製造。雖然商業化仍處於起步階段,但大面積生長、轉移方法和混合材料的進步,正推動其在穿戴式裝置、無線射頻和溫度控管領域的實驗性應用。而要實現商業化,則需要降低成本、提高製程可重複性,並將其整合到現有晶圓廠中。

根據美國國家標準與技術美國(NIST) 的說法,對石墨烯電子裝置的研究表明,其開關速度有望比傳統矽電晶體快 10 倍,電子遷移率也更高。

優異的材料性能

石墨烯卓越的導電性、極高的載子遷移率和優異的導熱性,顯著提升了電子元件的性能。這些材料特性使設計人員能夠開發速度更快的電晶體、靈敏的感測器和低電阻互連,同時,其原子級厚度和機械強度也使其能夠支援超薄輕量化架構。此外,石墨烯與多種基板具有良好的黏附性,並能改善功率模組的散熱性能,從而便於將其整合到剛性和軟性裝置中。因此,製造商正在優先考慮石墨烯組件,加速原型製作,吸引風險投資,並支持商業性化進程,從而推動其在全球範圍內的廣泛應用。

製造成本高且製造流程複雜

儘管石墨烯前景廣闊,但其商業化生產仍成本高昂且技術難度高。化學氣相沉積、外延生長和氧化石墨烯還原等方法都存在品質、產量和成本之間的權衡取捨。這些因素增加了單一裝置的成本,並使其難以整合到現有的半導體和印刷電子生產線中。

拓展至軟性/穿戴電子產品領域

石墨烯兼具柔韌性、導電性和輕薄性,使其非常適合用於軟性顯示器、智慧紡織品和穿戴式感測器。可印刷石墨烯油墨和捲對捲加工技術的進步,使得在塑膠和紡織基材上進行低成本沉積成為可能,從而彌合了實驗室原型製作與規模化生產之間的差距。此外,醫療和家用電子電器領域對輕巧、耐用且透氣的感測平台的需求不斷成長,也為石墨烯的商業性發展鋪平了道路。新興企業和成熟製造商正在試點將石墨烯應用於儲能、感測和互連的整合系統,在全球範圍內開拓新的收入來源並建立行業夥伴關係,從而加速市場普及。

新材料面臨的監管障礙

石墨烯基組件的引入面臨日益嚴格的監管審查,這些審查主要涉及奈米材料的安全性、環境影響和生產排放。多個司法管轄區正在製定針對新型2D材料的測試和報告要求。此外,分類、廢棄物處理和允許暴露限值方面的不確定性也推高了測試和文件編製成本。

新冠疫情的影響:

疫情擾亂了石墨烯供應鏈,工廠和實驗室關閉、出貨暫停,導致試點項目延期。部分家用電子電器的需求暫時放緩,而對先導計畫和遠端監控應用的興趣則有所增加。調查顯示,供應商在地化、研究醫療設備間的數位化協作以及可擴展的低成本生產路線已成為優先事項。整體而言,新冠疫情延緩了石墨烯的近期商業化進程,但也凸顯了醫療保健和遙感領域的機遇,從而推動了高效能、高性能電子產品和醫療應用的快速發展。

預計在預測期內,石墨烯薄膜/薄片細分市場將成為最大的細分市場。

預計在預測期內,石墨烯薄膜/片材細分市場將佔據最大的市場佔有率。薄膜和片材為替代或增強許多裝置中的氧化銦錫電極、金屬互連和散熱器提供了一個切實可行的途徑。相對成熟的供應鏈以及與印刷、層壓和濺鍍生產線的兼容性降低了原始設備製造商 (OEM) 的整合難度。此外,缺陷控制和轉移技術的穩定改進正在提高產量比率並減少廢品。隨著生產規模和供應商生態系統的增強,該細分市場的佔有率將不斷擴大,從而推動客戶採用。

預計在預測期內,還原氧化石墨烯(rGO)細分市場將以最高的複合年成長率成長。

預計在預測期內,還原氧化石墨烯 (rGO) 領域將呈現最高的成長率。市場對 rGO 的興趣源於其成本、可調性和與印刷及複合工藝的兼容性,使其適用於卷對卷生產和大面積塗覆。開發人員可以最佳化還原程度以滿足導電性和功能基團的要求,從而開發出用於印刷感測器的 rGO 油墨和用於溫度控管的 rGO 填充複合複合材料。展望未來,隨著中試生產線規模的擴大以及供應商和 OEM 合作夥伴在全球加速商業性示範,rGO 的應用預計將迅速擴展。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率。強大的研究機構生態系統、先進的半導體製造廠以及大量的研發投資,支撐著北美的領先地位。家用電子電器、通訊和航太的需求正在推動石墨烯組件的早期商業化。成熟的供應鏈、雄厚的創業投資資金籌措以及主要原始設備製造商(OEM)的優惠採購政策,使該地區成為試點項目和規模化生產的理想之地。此外,清晰的監管環境和與企業客戶的緊密聯繫縮短了認證週期,使供應商能夠將原型轉化為生產契約,從而確保永續的市場佔有率和出口。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率。快速的工業化、消費性電子製造業的成長以及政府大力推動教育和醫療數位化,正推動該地區的發展勢頭。智慧型手機普及率的提高和中階需求的成長,為低成本、高性能石墨烯應用(例如軟性顯示器、感測器和儲能設備)創造了大規模市場。本地製造商和新興企業正在降低生產成本並客製化產品以滿足區域需求,而國際夥伴關係將在未來十年顯著推動該地區的商業性化應用。

免費客製化服務

訂閱本報告的用戶可從以下免費自訂選項中選擇一項:

  • 公司簡介
    • 對最多三家其他公司進行全面分析
    • 對主要企業進行SWOT分析(最多3家公司)
  • 區域分類
    • 根據客戶興趣對主要國家進行市場估算、預測和複合年成長率分析(註:基於可行性檢查)
  • 競爭基準化分析
    • 基於產品系列、地域覆蓋和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 引言

  • 概述
  • 相關利益者
  • 分析範圍
  • 分析方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 分析方法
  • 分析材料
    • 原始研究資料
    • 二手研究資訊來源
    • 先決條件

第3章 市場趨勢分析

  • 促進要素
  • 抑制因素
  • 市場機遇
  • 威脅
  • 應用分析
  • 終端用戶分析
  • 新興市場
  • 新冠疫情的感染疾病

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代產品的威脅
  • 新參與企業的威脅
  • 公司間的競爭

5. 全球石墨烯基電子產品市場(依材料類型分類)

  • 石墨烯奈米微片(GNPs)
  • 氧化石墨烯(GO)和還原氧化石墨烯(rGO)
  • 石墨烯薄膜/片材
  • 石墨烯泡沫
  • 其他材料類型

6. 全球石墨烯基電子產品市場(依生產方法分類)

  • 化學沉澱沉積(CVD)
  • 機械/液相剝離
  • 氧化石墨烯(rGO)還原
  • 碳化矽(SiC)外延
  • 其他製造方法

7. 全球石墨烯基電子產品市場(按應用分類)

  • 展示
    • OLED顯示器
    • 透明顯示器
    • 軟性顯示器
  • 儲存裝置
    • 基於石墨烯的快閃記憶體
    • 基於石墨烯的DRAM
  • 儲能裝置
    • 石墨烯基鋰離子電池
    • 石墨烯超級電容
  • 太陽能電池
    • 石墨烯太陽能電池
    • 石墨烯增強型太陽能電池
  • 感測器和致動器
  • 導電油墨塗層
  • 其他用途

8. 全球石墨烯基電子產品市場(依最終用戶分類)

  • 家用電器
  • 航太/國防
  • 醫療保健
  • 工業機器人
  • 能源與電力
  • 建造
  • 其他最終用戶

9. 全球石墨烯基電子產品市場(按地區分類)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 亞太其他地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:主要趨勢

  • 合約、商業夥伴關係和合資企業
  • 企業合併(M&A)
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第11章 公司簡介

  • Samsung Electronics Co., Ltd.
  • IBM Corporation
  • Graphenea SA
  • Graphene Laboratories, Inc.
  • Graphene Square, Inc.
  • Graphene Frontiers LLC
  • Grafoid Inc.
  • Skeleton Technologies
  • AMG Advanced Metallurgical Group NV
  • Haydale Graphene Industries plc
  • First Graphene Ltd.
  • NanoXplore Inc.
  • Graphene Platform Corporation
  • Versarien plc
  • Graphene Technologies
  • Graphene Innovations Manchester
  • Log9 Materials
  • Levidian Nanosystems
  • BeDimensional
  • Paragraf
Product Code: SMRC31897

According to Stratistics MRC, the Global Graphene-Based Electronics Market is accounted for $873.6 million in 2025 and is expected to reach $7214.0 million by 2032 growing at a CAGR of 35.2% during the forecast period. Graphene-based electronics exploit graphene's conductivity, flexibility, and thermal performance to enable high-frequency components, sensors, transparent electrodes, and flexible circuits. While commercialization remains nascent, advances in large-area growth, transfer methods, and hybrid materials are enabling pilot applications in wearables, RF, and thermal management. Growth will follow cost reductions, process reproducibility, and integration into existing fabs.

According to the U.S. National Institute of Standards and Technology (NIST), graphene-based electronics research demonstrates potential for 10x faster switching speeds and higher electron mobility compared to traditional silicon transistors.

Market Dynamics:

Driver:

Superior material properties

Graphene's exceptional electrical conductivity, very high carrier mobility, and superior thermal conductivity enable significant performance improvements in electronic devices. These material attributes allow designers to develop faster transistors, highly sensitive sensors, and low-resistance interconnects while benefiting from atomic thinness and mechanical robustness that support ultra-thin, lightweight architectures. Moreover, graphene adheres to many substrates and improves heat dissipation in power modules, facilitating integration into both rigid and flexible formats. Consequently manufacturers prioritise graphene components, accelerating prototyping, attracting venture investment, and supporting commercialisation efforts and enabling broader commercial adoption globally.

Restraint:

High production costs and complex manufacturing

Despite its promise, commercial-scale graphene production remains costly and technologically demanding. Methods such as chemical vapor deposition, epitaxial growth, and reduction of graphene oxide each present trade-offs between quality, throughput, and expense, while achieving consistent, defect-free material at wafer scale is challenging. These factors raise per-unit component costs and complicate integration into existing semiconductor and printed-electronics manufacturing lines.

Opportunity:

Expansion into flexible/wearable electronics

Graphene's combination of flexibility, conductivity, and thin form factor positions it well for flexible displays, smart textiles, and wearable sensors. Advances in printable graphene inks and roll-to-roll processes enable low-cost deposition onto plastic or fabric substrates, bridging laboratory prototypes and scalable manufacturing. Additionally, demand for lightweight, durable, and breathable sensing platforms in healthcare and consumer electronics creates clear commercial pathways. Startups and established manufacturers are piloting integrated systems that embed graphene for energy storage, sensing, and interconnects, opening new revenue streams and industry partnerships globally, accelerating market adoption rapidly.

Threat:

Regulatory hurdles for new materials

Introduction of graphene-based components faces evolving regulatory scrutiny related to nanomaterial safety, environmental impact, and manufacturing emissions. Authorities in several jurisdictions are developing testing and reporting requirements for novel two-dimensional materials, and compliance timelines can slow commercial rollouts. Moreover, uncertainty about classification, waste handling, and permissible exposure limits raises costs for testing and documentation.

Covid-19 Impact:

The pandemic disrupted graphene supply chains and delayed pilot projects as factories and research labs faced closures and shipping interruptions. Demand for some consumer electronics slowed temporarily, while medical and remote-monitoring device applications created pockets of increased interest. Recovery emphasised localisation of suppliers, digital collaboration between research partners, and prioritisation of scalable, low-cost production routes. Overall, COVID-19 slowed near-term commercialisation but also highlighted healthcare and remote-sensing opportunities that reinforced development of efficient, high-performance electronic and healthcare applications urgently.

The graphene film/sheets segment is expected to be the largest during the forecast period

The graphene film/sheets segment is expected to account for the largest market share during the forecast period. Films and sheets provide practical routes to replace or augment indium tin oxide electrodes, metal interconnects, and thermal spreads in many devices. Their relatively mature supply chains and compatibility with printing, lamination, and sputtering lines reduce integration friction for OEMs. Furthermore, steady improvements in defect control and transfer techniques have increased yields and lowered scrap; as production scales and vendor ecosystems strengthen, this segment's market share expands, boosting customer adoption.

The reduction of graphene oxide (rGO) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the reduction of graphene oxide (rGO) segment is predicted to witness the highest growth rate. Market interest in rGO stems from its balance of cost, tunability, and compatibility with printing and composite processes, which suits roll-to-roll manufacturing and large-area coatings. Developers can optimise reduction levels to meet conductivity or functional-group requirements, enabling rGO inks for printed sensors and rGO-filled composites for thermal management. As pilot lines scale and supplier-OEM partnerships accelerate commercial demonstrations worldwide in coming years, rGO adoption is projected to expand rapidly.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. A robust ecosystem of research institutions, advanced semiconductor fabs, and substantial R&D investment underpin North America's leadership. Demand from consumer electronics, telecommunications, and aerospace drives early commercial adoption of graphene-enabled components. Well-established supply chains, strong venture capital funding, and favourable procurement by large OEMs make the region attractive for pilots and scaling. Moreover, regulatory clarity and proximity to corporate customers shorten qualification cycles, enabling vendors to convert prototypes into production contracts and secure sustained market share, and exports.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid industrialisation, growing consumer electronics manufacturing, and strong government initiatives to digitise education and healthcare drive regional momentum. Rising smartphone penetration and expanding middle-class demand create large addressable markets for low-cost, high-performance graphene applications such as flexible displays, sensors, and energy storage. Local manufacturers and startups are lowering production costs and tailoring products for regional needs, and international partnerships will catalyse commercial uptake regionally over the next decade significantly.

Key players in the market

Some of the key players in Graphene-Based Electronics Market include Samsung Electronics Co., Ltd., IBM Corporation, Graphenea S.A., Graphene Laboratories, Inc., Graphene Square, Inc., Graphene Frontiers LLC, Grafoid Inc., Skeleton Technologies, AMG Advanced Metallurgical Group N.V., Haydale Graphene Industries plc, First Graphene Ltd., NanoXplore Inc., Graphene Platform Corporation, Versarien plc, Graphene Technologies, Graphene Innovations Manchester, Log9 Materials, Levidian Nanosystems, BeDimensional, and Paragraf.

Key Developments:

In September 2025, Skeleton Technologies, a European leader in high-power energy storage, has signed a Memorandum of Understanding (MOU) with H2G to explore commercial opportunities in the Australian market, marking a pivotal step in the nation's transition away from Li Batteries in Data Centres to very high-power density solutions for Data Centres and Large Servers.

In July 2025, A breakthrough at the IBM research facility has found a way to increase advanced graphene based chip manufacturing by 10K times previous performance levels. The new manufacturing technique allows for a more stable application of the electricity conducting material to be placed on silicon operating platforms without the high rate of loss to material accepted in traditional methods. What makes this new process even more valuable to the chip makers at IBM is that the new process is 100% compatible with existing silicon platforms, making the application process revolutionary in graphene based applications. With the spread of technology requiring the advanced properties of graphene, this will speed up and reduce costs associated with the element.

In February 2025, Model Solution Co., Ltd, a total hardware platform company and a subsidiary of Hankook & Company Group, has entered into a strategic collaboration with Graphene Square Co., Ltd., a leading advanced materials company, for the development and production of innovative electronic devices powered by graphene technology across electronics, energy, healthcare and home appliances industries.

Material Types Covered:

  • Graphene Nanoplatelets (GNPs)
  • Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)
  • Graphene Film/Sheets
  • Graphene Foam
  • Other Material Types

Manufacturing Methods Covered:

  • Chemical Vapor Deposition (CVD)
  • Mechanical/Liquid Phase Exfoliation
  • Reduction of Graphene Oxide (rGO)
  • Silicon Carbide (SiC) Epitaxy
  • Other Manufacturing Methods

Applications Covered:

  • Displays
  • Memory Devices
  • Energy Storage Devices
  • Solar Cells
  • Sensors and Actuators
  • Conductive Inks and Coatings
  • Other Applications

End Users Covered:

  • Consumer Electronics
  • Automotive
  • Aerospace and Defense
  • Healthcare
  • Industrial Robotics
  • Energy and Power
  • Construction
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Graphene-Based Electronics Market, By Material Type

  • 5.1 Introduction
  • 5.2 Graphene Nanoplatelets (GNPs)
  • 5.3 Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)
  • 5.4 Graphene Film/Sheets
  • 5.5 Graphene Foam
  • 5.6 Other Material Types

6 Global Graphene-Based Electronics Market, By Manufacturing Method

  • 6.1 Introduction
  • 6.2 Chemical Vapor Deposition (CVD)
  • 6.3 Mechanical/Liquid Phase Exfoliation
  • 6.4 Reduction of Graphene Oxide (rGO)
  • 6.5 Silicon Carbide (SiC) Epitaxy
  • 6.6 Other Manufacturing Methods

7 Global Graphene-Based Electronics Market, By Application

  • 7.1 Introduction
  • 7.2 Displays
    • 7.2.1 OLED Displays
    • 7.2.2 Transparent Displays
    • 7.2.3 Flexible Displays
  • 7.3 Memory Devices
    • 7.3.1 Graphene-Based Flash Memory
    • 7.3.2 Graphene-Based DRAM
  • 7.4 Energy Storage Devices
    • 7.4.1 Graphene-Based Lithium-Ion Batteries
    • 7.4.2 Graphene Supercapacitors
  • 7.5 Solar Cells
    • 7.5.1 Graphene-Based Photovoltaic Cells
    • 7.5.2 Graphene-Enhanced Solar Cells
  • 7.6 Sensors and Actuators
  • 7.7 Conductive Inks and Coatings
  • 7.8 Other Applications

8 Global Graphene-Based Electronics Market, By End User

  • 8.1 Introduction
  • 8.2 Consumer Electronics
  • 8.3 Automotive
  • 8.4 Aerospace and Defense
  • 8.5 Healthcare
  • 8.6 Industrial Robotics
  • 8.7 Energy and Power
  • 8.8 Construction
  • 8.9 Other End Users

9 Global Graphene-Based Electronics Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Samsung Electronics Co., Ltd.
  • 11.2 IBM Corporation
  • 11.3 Graphenea S.A.
  • 11.4 Graphene Laboratories, Inc.
  • 11.5 Graphene Square, Inc.
  • 11.6 Graphene Frontiers LLC
  • 11.7 Grafoid Inc.
  • 11.8 Skeleton Technologies
  • 11.9 AMG Advanced Metallurgical Group N.V.
  • 11.10 Haydale Graphene Industries plc
  • 11.11 First Graphene Ltd.
  • 11.12 NanoXplore Inc.
  • 11.13 Graphene Platform Corporation
  • 11.14 Versarien plc
  • 11.15 Graphene Technologies
  • 11.16 Graphene Innovations Manchester
  • 11.17 Log9 Materials
  • 11.18 Levidian Nanosystems
  • 11.19 BeDimensional
  • 11.20 Paragraf

List of Tables

  • Table 1 Global Graphene-Based Electronics Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Graphene-Based Electronics Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Graphene-Based Electronics Market Outlook, By Graphene Nanoplatelets (GNPs) (2024-2032) ($MN)
  • Table 4 Global Graphene-Based Electronics Market Outlook, By Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) (2024-2032) ($MN)
  • Table 5 Global Graphene-Based Electronics Market Outlook, By Graphene Film/Sheets (2024-2032) ($MN)
  • Table 6 Global Graphene-Based Electronics Market Outlook, By Graphene Foam (2024-2032) ($MN)
  • Table 7 Global Graphene-Based Electronics Market Outlook, By Other Material Types (2024-2032) ($MN)
  • Table 8 Global Graphene-Based Electronics Market Outlook, By Manufacturing Method (2024-2032) ($MN)
  • Table 9 Global Graphene-Based Electronics Market Outlook, By Chemical Vapor Deposition (CVD) (2024-2032) ($MN)
  • Table 10 Global Graphene-Based Electronics Market Outlook, By Mechanical/Liquid Phase Exfoliation (2024-2032) ($MN)
  • Table 11 Global Graphene-Based Electronics Market Outlook, By Reduction of Graphene Oxide (rGO) (2024-2032) ($MN)
  • Table 12 Global Graphene-Based Electronics Market Outlook, By Silicon Carbide (SiC) Epitaxy (2024-2032) ($MN)
  • Table 13 Global Graphene-Based Electronics Market Outlook, By Other Manufacturing Methods (2024-2032) ($MN)
  • Table 14 Global Graphene-Based Electronics Market Outlook, By Application (2024-2032) ($MN)
  • Table 15 Global Graphene-Based Electronics Market Outlook, By Displays (2024-2032) ($MN)
  • Table 16 Global Graphene-Based Electronics Market Outlook, By OLED Displays (2024-2032) ($MN)
  • Table 17 Global Graphene-Based Electronics Market Outlook, By Transparent Displays (2024-2032) ($MN)
  • Table 18 Global Graphene-Based Electronics Market Outlook, By Flexible Displays (2024-2032) ($MN)
  • Table 19 Global Graphene-Based Electronics Market Outlook, By Memory Devices (2024-2032) ($MN)
  • Table 20 Global Graphene-Based Electronics Market Outlook, By Graphene-Based Flash Memory (2024-2032) ($MN)
  • Table 21 Global Graphene-Based Electronics Market Outlook, By Graphene-Based DRAM (2024-2032) ($MN)
  • Table 22 Global Graphene-Based Electronics Market Outlook, By Energy Storage Devices (2024-2032) ($MN)
  • Table 23 Global Graphene-Based Electronics Market Outlook, By Graphene-Based Lithium-Ion Batteries (2024-2032) ($MN)
  • Table 24 Global Graphene-Based Electronics Market Outlook, By Graphene Supercapacitors (2024-2032) ($MN)
  • Table 25 Global Graphene-Based Electronics Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 26 Global Graphene-Based Electronics Market Outlook, By Graphene-Based Photovoltaic Cells (2024-2032) ($MN)
  • Table 27 Global Graphene-Based Electronics Market Outlook, By Graphene-Enhanced Solar Cells (2024-2032) ($MN)
  • Table 28 Global Graphene-Based Electronics Market Outlook, By Sensors and Actuators (2024-2032) ($MN)
  • Table 29 Global Graphene-Based Electronics Market Outlook, By Conductive Inks and Coatings (2024-2032) ($MN)
  • Table 30 Global Graphene-Based Electronics Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 31 Global Graphene-Based Electronics Market Outlook, By End User (2024-2032) ($MN)
  • Table 32 Global Graphene-Based Electronics Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 33 Global Graphene-Based Electronics Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 34 Global Graphene-Based Electronics Market Outlook, By Aerospace and Defense (2024-2032) ($MN)
  • Table 35 Global Graphene-Based Electronics Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 36 Global Graphene-Based Electronics Market Outlook, By Industrial Robotics (2024-2032) ($MN)
  • Table 37 Global Graphene-Based Electronics Market Outlook, By Energy and Power (2024-2032) ($MN)
  • Table 38 Global Graphene-Based Electronics Market Outlook, By Construction (2024-2032) ($MN)
  • Table 39 Global Graphene-Based Electronics Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.