封面
市場調查報告書
商品編碼
1818040

量子電子感測設備市場預測(至 2032 年):按類型、部署平台、公司規模、技術、應用、最終用戶和地區進行的全球分析

Quantum Electronics & Sensing Devices Market Forecasts to 2032 - Global Analysis By Type, Deployment Platform, Enterprise Size, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球量子電子感測設備市場預計到 2025 年將達到 4,369 億美元,到 2032 年將達到 1,2199 億美元,預測期內的複合年成長率為 15.8%。

量子電子學和感測設備利用動態力學原理,例如疊加、糾纏和穿隧,實現比傳統系統更高的精度、靈敏度和性能。這些技術結合了量子位元、光子電路和奈米級材料,用於探測、測量和操控原子和亞原子層面的物理現象。它們廣泛應用於計量學、生物醫學診斷和安全通訊,能夠實現超靈敏探測、低雜訊訊號處理和即時資料擷取,為科學、工業和國防領域的下一代儀器儀表奠定了基礎。

對前所未有的高精度和靈敏度的需求不斷成長

量子電子裝置和感測設備在探測磁場、重力和時間同步的微小變化方面擁有無與倫比的精度。這些功能對於非GPS導航、地下測繪和腦部影像等應用至關重要。隨著傳統感測器性能達到極限,業界正在轉向量子技術,以滿足日益成長的精度需求。各國政府為提升戰略能力而推出的量子舉措和商業投資進一步推動了這項轉變。

與傳統技術的競爭

傳統感測器應用廣泛、經濟高效,並擁有成熟的製造生態系統。然而,由於量子感測器初始成本高昂、擴充性有限且整合要求複雜,許多產業對採用量子感測器猶豫不決。此外,缺乏標準化通訊協定以及與現有系統的互通性也為其廣泛應用帶來了額外的挑戰。這些因素正在減緩從舊有系統向量子平台的過渡。

加強與人工智慧和機器學習的融合

機器學習演算法可以透過校正雜訊、改進校準和實現即時決策來提升量子感測器的性能。這種融合將對自動駕駛汽車、智慧基礎設施和醫療診斷等領域產生特別顯著的影響,因為快速且準確的感測至關重要。隨著人工智慧框架日益複雜,它們與量子設備的整合有望激發創新並開闢新的商業性途徑。這種協同效應也吸引了跨學科研究和創投的關注。

智慧財產權和國家安全問題

世界各國政府正在實施出口管制並加強監管,以保護敏感的量子技術創新。量子感測器既可用於民用,也可用於軍用,這增加了濫用和未授權存取存取的風險。此外,專利分散和權利要求重疊可能導致法律糾紛,並延遲商業化。這些風險需要強力的網路安全措施和國際合作,以確保負責任的開發和部署。

COVID-19的影響

新冠疫情對量子電子感測設備市場產生了微妙的影響。雖然最初的封鎖措施擾亂了供應鏈,減緩了研發活動,但這場危機也凸顯了先進感測技術在醫療保健和遠距離診斷的重要性。量子感測器有助於提高診斷成像的準確性,並在臨床環境中監測生理參數。此外,疫情加速了數位轉型,並增加了人們對基於量子技術的安全通訊和資料完整性解決方案的興趣。

預計量子感測器市場在預測期內將佔據最大佔有率

量子感測器領域預計將在預測期內佔據最大的市場佔有率,這得益於其無與倫比的極高精度物理現象測量能力。手錶、量子磁力儀和重力儀等技術已廣泛應用於航太、國防和物理探勘。它們的高靈敏度和抗環境噪音能力使其成為策略應用的關鍵。該領域受益於持續的微型化努力以及與CMOS相容平台的整合,從而擴展了其在商業領域的可用性。

預計矽光電領域在預測期內將實現最高的複合年成長率

矽光電領域預計將在預測期內實現最高成長率,這得益於其在高速資料傳輸和緊湊型量子電路方面發揮的作用。這些元件利用基於光的訊號處理技術實現低延遲通訊和頻寬頻寬,使其成為量子運算和安全網路的理想選擇。該領域也在快速創新混合整合技術,使光子晶片能夠與量子處理器和感測器連接。

最大共享區域

在政府資金、先進研究機構和蓬勃發展的新創企業新興企業系統的推動下,北美預計將在預測期內佔據最大的市場佔有率。該地區擁有多個重要的量子項目,包括國防級感測器開發和太空量子實驗。學術界和產業界之間的緊密合作正在加速技術轉移和商業化。此外,監管支持和戰略夥伴關係正在鞏固北美在該領域的主導地位。

複合年成長率最高的地區

預計亞太地區在預測期內的複合年成長率最高。中國、日本和印度等國家已啟動國家舉措,建造量子基礎設施並培養技術人才。該地區對先進導航系統、環境監測工具和安全通訊網路的需求不斷成長,推動了相關技術的採用。隨著各國政府重視技術主權,亞太地區正逐漸成為量子創新的活力中心。

免費客製化服務

此報告的訂閱者可以選擇以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球量子電子感測設備市場類型

  • 量子感測器
    • 單光子檢測器(SPD)
    • 量子磁力儀
    • 量子重力儀/梯度儀
    • 量子靜電計/射頻感測器
    • 量子加速計/陀螺儀
    • 光合有效輻射(PAR)量子感測器
    • 手錶
    • 其他
  • 量子電子學
    • 量子運算硬體
    • 量子通訊和密碼設備
    • 量子光子裝置
    • 量子積體電路

6. 全球量子電子和感測設備市場(依部署平台分類)

  • 地面
  • 空中
  • 宇宙
  • 海洋/地下

7. 全球量子電子感測設備市場(依公司規模)

  • 小型企業
  • 主要企業

8. 全球量子電子和感測設備市場(按技術)

  • 捕獲離子
  • 超導性量子乾涉裝置(SQUID)
  • 矽光電
  • 半導體量子點
  • 里德伯原子電場感測器
  • 光機/光子感測器
  • 氮空位(NV)鑽石
  • 中性原子
  • 冷原子乾涉法
  • 其他

9. 全球量子電子感測設備市場(按應用)

  • 醫學影像
  • 石油天然氣、採礦、地球物理學
  • 環境監測
  • 量子計算和密碼學
  • 加密貨幣和交易
  • 生物磁感
  • 公共產業和能源電網管理
  • 其他

第 10 章全球量子電子感測設備市場(按最終用戶)

  • 航太/國防
  • 建築和採礦
  • 汽車和運輸
  • 醫療保健/生命科學
  • 研究與學術
  • 其他

第 11 章全球量子電子感測設備市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章:企業概況

  • ID Quantique SA
  • Campbell Scientific, Inc.
  • LI-COR Biosciences
  • M Squared Lasers Ltd.
  • Muquans SAS
  • Qnami AG
  • Teledyne Scientific & Imaging
  • Thorlabs, Inc.
  • Oxford Instruments plc
  • QuSpin Inc.
  • Zurich Instruments AG
  • AOSense, Inc.
  • Qnnect LLC
  • QinetiQ Group plc
  • Bosch Quantum Sensing
  • Infleqtion
Product Code: SMRC31003

According to Stratistics MRC, the Global Quantum Electronics & Sensing Devices Market is accounted for $436.9 billion in 2025 and is expected to reach $1,219.9 billion by 2032 growing at a CAGR of 15.8% during the forecast period. Quantum electronics and sensing devices utilize quantum mechanical principles such as superposition, entanglement, and tunneling to achieve enhanced precision, sensitivity, and performance beyond classical systems. These technologies incorporate quantum bits, photonic circuits, and nanoscale materials to detect, measure, or manipulate physical phenomena at atomic and subatomic levels. Widely applied in metrology, biomedical diagnostics, and secure communications, they enable ultra-sensitive detection, low-noise signal processing, and real-time data acquisition, forming the foundation for next-generation instrumentation across scientific, industrial, and defense sectors.

Market Dynamics:

Driver:

Increasing need for unprecedented precision and sensitivity

Quantum electronics and sensing devices offer unmatched accuracy in detecting minute changes in magnetic fields, gravitational forces, and time synchronization. These capabilities are vital for applications like GPS-denied navigation, subsurface mapping, and brain imaging. As conventional sensors reach their performance limits, industries are turning to quantum technologies to meet rising expectations for precision. This shift is further supported by national quantum initiatives and commercial investments aimed at enhancing strategic capabilities.

Restraint:

Competition from traditional technologies

Conventional sensors are widely available, cost-effective, and supported by mature manufacturing ecosystems. Many industries remain hesitant to adopt quantum alternatives due to high initial costs, limited scalability, and complex integration requirements. Additionally, the lack of standardized protocols and interoperability with existing systems poses challenges for widespread deployment. These factors collectively slow down the transition from legacy systems to quantum-enabled platforms.

Opportunity:

Growing convergence with AI and machine learning

Machine learning algorithms can enhance the performance of quantum sensors by compensating for noise, improving calibration, and enabling real-time decision-making. This convergence is particularly impactful in autonomous vehicles, smart infrastructure, and medical diagnostics, where rapid and accurate sensing is critical. As AI frameworks become more sophisticated, their integration with quantum devices is expected to drive innovation and open new commercial pathways. This synergy is also attracting cross-disciplinary research and venture capital funding.

Threat:

Intellectual property and national security concerns

Governments are implementing export controls and tightening regulations to safeguard sensitive quantum innovations. The dual-use nature of quantum sensors-applicable in both civilian and military domains heightens the risk of misuse or unauthorized access. Additionally, fragmented patent landscapes and overlapping claims can lead to legal disputes, slowing down commercialization. These risks necessitate robust cybersecurity measures and international cooperation to ensure responsible development and deployment.

Covid-19 Impact:

The COVID-19 pandemic had a nuanced impact on the quantum electronics and sensing devices market. While initial lockdowns disrupted supply chains and delayed R&D activities, the crisis also underscored the importance of advanced sensing technologies in healthcare and remote diagnostics. Quantum sensors played a role in enhancing imaging precision and monitoring physiological parameters in clinical settings. Moreover, the pandemic accelerated digital transformation, prompting increased interest in quantum-enabled solutions for secure communications and data integrity.

The quantum sensors segment is expected to be the largest during the forecast period

The quantum sensors segment is expected to account for the largest market share during the forecast period due to their unparalleled ability to measure physical phenomena with extreme accuracy. Technologies such as atomic clocks, quantum magnetometers, and gravimeters are being deployed in aerospace, defense, and geophysical exploration. Their high sensitivity and resilience to environmental noise make them indispensable for strategic applications. The segment benefits from ongoing miniaturization efforts and integration with CMOS-compatible platforms, which are expanding their usability across commercial domains.

The silicon photonics segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the silicon photonics segment is predicted to witness the highest growth rate driven by its role in enabling high-speed data transmission and compact quantum circuits. These devices leverage light-based signal processing to achieve low-latency communication and enhanced bandwidth, making them ideal for quantum computing and secure networks. The segment is witnessing rapid innovation in hybrid integration techniques, allowing photonic chips to interface with quantum processors and sensors.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed to robust government funding, advanced research institutions, and a thriving startup ecosystem. The region hosts several flagship quantum programs, including defense-grade sensor development and spaceborne quantum experiments. Strong collaborations between academia and industry are accelerating technology transfer and commercialization. Furthermore, regulatory support and strategic partnerships are reinforcing North America's dominance in this domain.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGRfueled by rising investments in quantum research and expanding industrial applications. Countries like China, Japan, and India are launching national initiatives to build quantum infrastructure and train skilled personnel. The region's growing demand for advanced navigation systems, environmental monitoring tools, and secure communication networks is driving adoption. As regional governments prioritize technological sovereignty, Asia Pacific is emerging as a dynamic hub for quantum innovation.

Key players in the market

Some of the key players in Quantum Electronics & Sensing Devices Market include ID Quantique SA, Campbell Scientific, Inc., LI-COR Biosciences, M Squared Lasers Ltd., Muquans SAS, Qnami AG, Teledyne Scientific & Imaging, Thorlabs, Inc., Oxford Instruments plc, QuSpin Inc., Zurich Instruments AG, AOSense, Inc., Qnnect LLC, QinetiQ Group plc, Bosch Quantum Sensing, and Infleqtion.

Key Developments:

In June 2025, Campbell Scientific reported a contract to design, deliver and commission an AWOS (Automated Weather Observing System) for Beyla Airport, Guinea, showing continued deployment of their environmental/meteorological monitoring systems.

In June 2025, ID Quantique announced collaboration with Turkcell (and Juniper Networks) to deploy quantum-safe networking solutions, showcasing IDQ's quantum-secure crypto and photonics expertise for telecom infrastructure.

In January 2025, Thorlabs announced the acquisition/strategic partnership with Praevium Research (VCSEL/laser technology) a move to bring high-speed tunable VCSEL capability into Thorlabs' portfolio. Industry coverage framed this as strengthening Thorlabs' position in quantum/photonic component supply for imaging and communications.

Types Covered:

  • Quantum Sensors
  • Quantum Electronics

Deployment Platforms Covered:

  • Ground-based
  • Airborne
  • Spaceborne
  • Marine / Sub-surface

Enterprise Sizes Covered:

  • Small and Medium Enterprises
  • Large Enterprises

Technologies Covered:

  • Trapped Ions
  • Superconducting Quantum Interference Devices (SQUIDs)
  • Silicon Photonics
  • Semiconductor Quantum Dots
  • Rydberg-Atom Electric-Field Sensors
  • Optomechanical / Photonic Sensors
  • Nitrogen-Vacancy (NV) Diamond
  • Neutral Atoms
  • Cold-Atom Interferometry
  • Other Technologies

Applications Covered:

  • Medical Imaging
  • Oil & Gas, Mining, & Geophysics
  • Environmental Monitoring
  • Quantum Computing & Cryptography
  • Encryption & Trading
  • Biomagnetic Sensing
  • Utilities & Energy Grid Management
  • Other Applications

End Users Covered:

  • Aerospace & Defense
  • Construction & Mining
  • Automotive & Transportation
  • Healthcare/Life Sciences
  • Research & Academia
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Quantum Electronics & Sensing Devices Market, By Type

  • 5.1 Introduction
  • 5.2 Quantum Sensors
    • 5.2.1 Single Photon Detectors (SPDs)
    • 5.2.2 Quantum Magnetometers
    • 5.2.3 Quantum Gravimeters & Gradiometers
    • 5.2.4 Quantum Electrometers & RF Sensors
    • 5.2.5 Quantum Accelerometers & Gyroscopes
    • 5.2.6 Photosynthetically Active Radiation (PAR) Quantum Sensors
    • 5.2.7 Other Quantum Sensors
    • 5.2.8 Atomic Clocks
    • 5.2.9 Other Quantum Sensors
  • 5.3 Quantum Electronics
    • 5.3.1 Quantum Computing Hardware
    • 5.3.2 Quantum Communication & Cryptography Devices
    • 5.3.3 Quantum Photonic Devices
    • 5.3.4 Quantum Integrated Circuits

6 Global Quantum Electronics & Sensing Devices Market, By Deployment Platform

  • 6.1 Introduction
  • 6.2 Ground-based
  • 6.3 Airborne
  • 6.4 Spaceborne
  • 6.5 Marine / Sub-surface

7 Global Quantum Electronics & Sensing Devices Market, By Enterprise Size

  • 7.1 Introduction
  • 7.2 Small and Medium Enterprises
  • 7.3 Large Enterprises

8 Global Quantum Electronics & Sensing Devices Market, By Technology

  • 8.1 Introduction
  • 8.2 Trapped Ions
  • 8.3 Superconducting Quantum Interference Devices (SQUIDs)
  • 8.4 Silicon Photonics
  • 8.5 Semiconductor Quantum Dots
  • 8.6 Rydberg-Atom Electric-Field Sensors
  • 8.7 Optomechanical / Photonic Sensors
  • 8.8 Nitrogen-Vacancy (NV) Diamond
  • 8.9 Neutral Atoms
  • 8.10 Cold-Atom Interferometry
  • 8.11 Other Technologies

9 Global Quantum Electronics & Sensing Devices Market, By Application

  • 9.1 Introduction
  • 9.2 Medical Imaging
  • 9.3 Oil & Gas, Mining, & Geophysics
  • 9.4 Environmental Monitoring
  • 9.5 Quantum Computing & Cryptography
  • 9.6 Encryption & Trading
  • 9.7 Biomagnetic Sensing
  • 9.8 Utilities & Energy Grid Management
  • 9.9 Other Applications

10 Global Quantum Electronics & Sensing Devices Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace & Defense
  • 10.3 Construction & Mining
  • 10.4 Automotive & Transportation
  • 10.5 Healthcare/Life Sciences
  • 10.6 Research & Academia
  • 10.7 Other End Users

11 Global Quantum Electronics & Sensing Devices Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 ID Quantique SA
  • 13.2 Campbell Scientific, Inc.
  • 13.3 LI-COR Biosciences
  • 13.4 M Squared Lasers Ltd.
  • 13.5 Muquans SAS
  • 13.6 Qnami AG
  • 13.7 Teledyne Scientific & Imaging
  • 13.8 Thorlabs, Inc.
  • 13.9 Oxford Instruments plc
  • 13.10 QuSpin Inc.
  • 13.11 Zurich Instruments AG
  • 13.12 AOSense, Inc.
  • 13.13 Qnnect LLC
  • 13.14 QinetiQ Group plc
  • 13.15 Bosch Quantum Sensing
  • 13.16 Infleqtion

List of Tables

  • Table 1 Global Quantum Electronics & Sensing Devices Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Quantum Electronics & Sensing Devices Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Sensors (2024-2032) ($MN)
  • Table 4 Global Quantum Electronics & Sensing Devices Market Outlook, By Single Photon Detectors (SPDs) (2024-2032) ($MN)
  • Table 5 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Magnetometers (2024-2032) ($MN)
  • Table 6 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Gravimeters & Gradiometers (2024-2032) ($MN)
  • Table 7 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Electrometers & RF Sensors (2024-2032) ($MN)
  • Table 8 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Accelerometers & Gyroscopes (2024-2032) ($MN)
  • Table 9 Global Quantum Electronics & Sensing Devices Market Outlook, By Photosynthetically Active Radiation (PAR) Quantum Sensors (2024-2032) ($MN)
  • Table 10 Global Quantum Electronics & Sensing Devices Market Outlook, By Other Quantum Sensors (2024-2032) ($MN)
  • Table 11 Global Quantum Electronics & Sensing Devices Market Outlook, By Atomic Clocks (2024-2032) ($MN)
  • Table 12 Global Quantum Electronics & Sensing Devices Market Outlook, By Other Quantum Sensors (2024-2032) ($MN)
  • Table 13 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Electronics (2024-2032) ($MN)
  • Table 14 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Computing Hardware (2024-2032) ($MN)
  • Table 15 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Communication & Cryptography Devices (2024-2032) ($MN)
  • Table 16 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Photonic Devices (2024-2032) ($MN)
  • Table 17 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Integrated Circuits (2024-2032) ($MN)
  • Table 18 Global Quantum Electronics & Sensing Devices Market Outlook, By Deployment Platform (2024-2032) ($MN)
  • Table 19 Global Quantum Electronics & Sensing Devices Market Outlook, By Ground-based (2024-2032) ($MN)
  • Table 20 Global Quantum Electronics & Sensing Devices Market Outlook, By Airborne (2024-2032) ($MN)
  • Table 21 Global Quantum Electronics & Sensing Devices Market Outlook, By Spaceborne (2024-2032) ($MN)
  • Table 22 Global Quantum Electronics & Sensing Devices Market Outlook, By Marine / Sub-surface (2024-2032) ($MN)
  • Table 23 Global Quantum Electronics & Sensing Devices Market Outlook, By Enterprise Size (2024-2032) ($MN)
  • Table 24 Global Quantum Electronics & Sensing Devices Market Outlook, By Small and Medium Enterprises (2024-2032) ($MN)
  • Table 25 Global Quantum Electronics & Sensing Devices Market Outlook, By Large Enterprises (2024-2032) ($MN)
  • Table 26 Global Quantum Electronics & Sensing Devices Market Outlook, By Technology (2024-2032) ($MN)
  • Table 27 Global Quantum Electronics & Sensing Devices Market Outlook, By Trapped Ions (2024-2032) ($MN)
  • Table 28 Global Quantum Electronics & Sensing Devices Market Outlook, By Superconducting Quantum Interference Devices (SQUIDs) (2024-2032) ($MN)
  • Table 29 Global Quantum Electronics & Sensing Devices Market Outlook, By Silicon Photonics (2024-2032) ($MN)
  • Table 30 Global Quantum Electronics & Sensing Devices Market Outlook, By Semiconductor Quantum Dots (2024-2032) ($MN)
  • Table 31 Global Quantum Electronics & Sensing Devices Market Outlook, By Rydberg-Atom Electric-Field Sensors (2024-2032) ($MN)
  • Table 32 Global Quantum Electronics & Sensing Devices Market Outlook, By Optomechanical / Photonic Sensors (2024-2032) ($MN)
  • Table 33 Global Quantum Electronics & Sensing Devices Market Outlook, By Nitrogen-Vacancy (NV) Diamond (2024-2032) ($MN)
  • Table 34 Global Quantum Electronics & Sensing Devices Market Outlook, By Neutral Atoms (2024-2032) ($MN)
  • Table 35 Global Quantum Electronics & Sensing Devices Market Outlook, By Cold-Atom Interferometry (2024-2032) ($MN)
  • Table 36 Global Quantum Electronics & Sensing Devices Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 37 Global Quantum Electronics & Sensing Devices Market Outlook, By Application (2024-2032) ($MN)
  • Table 38 Global Quantum Electronics & Sensing Devices Market Outlook, By Medical Imaging (2024-2032) ($MN)
  • Table 39 Global Quantum Electronics & Sensing Devices Market Outlook, By Oil & Gas, Mining, & Geophysics (2024-2032) ($MN)
  • Table 40 Global Quantum Electronics & Sensing Devices Market Outlook, By Environmental Monitoring (2024-2032) ($MN)
  • Table 41 Global Quantum Electronics & Sensing Devices Market Outlook, By Quantum Computing & Cryptography (2024-2032) ($MN)
  • Table 42 Global Quantum Electronics & Sensing Devices Market Outlook, By Encryption & Trading (2024-2032) ($MN)
  • Table 43 Global Quantum Electronics & Sensing Devices Market Outlook, By Biomagnetic Sensing (2024-2032) ($MN)
  • Table 44 Global Quantum Electronics & Sensing Devices Market Outlook, By Utilities & Energy Grid Management (2024-2032) ($MN)
  • Table 45 Global Quantum Electronics & Sensing Devices Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 46 Global Quantum Electronics & Sensing Devices Market Outlook, By End User (2024-2032) ($MN)
  • Table 47 Global Quantum Electronics & Sensing Devices Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 48 Global Quantum Electronics & Sensing Devices Market Outlook, By Construction & Mining (2024-2032) ($MN)
  • Table 49 Global Quantum Electronics & Sensing Devices Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 50 Global Quantum Electronics & Sensing Devices Market Outlook, By Healthcare/Life Sciences (2024-2032) ($MN)
  • Table 51 Global Quantum Electronics & Sensing Devices Market Outlook, By Research & Academia (2024-2032) ($MN)
  • Table 52 Global Quantum Electronics & Sensing Devices Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.