封面
市場調查報告書
商品編碼
1813471

2032年食品廢棄物回收市場預測:按食品廢棄物類型、回收技術、應用和地區進行的全球分析

Food Waste Valorization Market Forecasts to 2032 - Global Analysis By Type of Food Waste, Valorization Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球食物廢棄物回收市場預計在 2025 年達到 587 億美元,到 2032 年將達到 859 億美元,預測期內的複合年成長率為 5.6%。

食物廢棄物回收將食品工業廢品和廢棄的有機廢棄物轉化為有價值的產品,例如生質燃料、動物飼料、肥料和生物化學品。這個過程解決了食物廢棄物堆積所帶來的環境挑戰,同時促進了循環經濟模式的發展。治療方法包括厭氧消化、發酵、酵素處理和化學萃取,因此可以回收能量、營養物質和功能性化合物。食物廢棄物回收應用於農業、能源和化學工業,可以提高永續性,減少溫室氣體排放,提高資源效率,並為全球減少廢棄物和利用可再生資源的努力做出貢獻。

根據聯合國糧食及農業組織(FAO)估計,人類生產的可食用食物中約有三分之一被浪費或損失,每年達13億噸。

全球努力減少食物浪費和溫室氣體排放

全球減緩氣候變遷的迫切需求是市場的關鍵驅動力,迫使各國政府和企業採取嚴格的永續性措施。聯合國永續發展目標和歐盟「從農場到餐桌」戰略等政策透過設定具體的減排目標並對垃圾掩埋進行處罰,直接鼓勵廢棄物。這種監管壓力,加上企業的ESG承諾,將食物廢棄物從一項處置責任轉化為循環經濟模式的寶貴資源。此外,垃圾掩埋中有機物分解與甲烷生成之間的直接聯繫,凸顯了回收利用在實現顯著溫室氣體排放、加速市場應用方面發揮的關鍵作用。

物流和預處理成本高

市場擴張的主要障礙是收集、運輸和初步處理異質性食物廢棄物所需的巨額資本和營運支出。用於收集分散廢棄物流的物流網路複雜且成本高昂,需要專門的處理和冷藏以防止變質。此外,分類、清洗和減容等預處理步驟必不可少,但會產生大量的營運開銷。這些高昂的初始成本阻礙了投資,尤其是對中小型企業而言,與傳統的低成本處置方法(例如掩埋)相比,回收計劃的經濟可行性也受到了挑戰。

融入智慧城市廢棄物系統

物聯網智慧垃圾桶可以最佳化收集路線,降低物流成本,並提高效率。先進的數據分析可以預測廢棄物產生模式,並更好地規劃預處理和轉換設施的運作。這種數位化整合創造了一個集中式智慧廢棄物管理生態系統,使回收更具經濟可行性。它還能讓地方當局即時了解永續永續性目標的進展,從而鼓勵進一步的公共和私人投資。

大眾認知和安全擔憂

公眾對廢棄物流衍生產品的安全性和品質的擔憂,尤其是在動物飼料和生質燃料等領域,威脅著市場的成長。對病原體和重金屬等潛在污染物轉移的擔憂,可能構成嚴格的監管障礙,並延緩新技術的核准流程。此外,「廢棄物轉化為產品」的概念面臨消費者的抵制和社會的缺乏認可,這可能會給最終產品帶來污名化,並限制市場滲透。這種負面認知可能會阻礙品牌聯想和投資,對創新回收技術的商業化和可擴展性構成重大風險。

COVID-19的影響:

新冠疫情最初擾亂了食品廢棄物回收市場,導致供應鏈癱瘓、封鎖以及餐飲服務設施暫時關閉,改變了廢棄物的產生模式和數量。由於社交隔離規定和資本重新配置,計劃持續延期。然而,這場危機也提高了人們對供應鏈脆弱性以及永續在地化資源管理重要性的認知。這加速了對循環經濟模式的長期政策支持和投資,以此作為增強韌性的手段,最終促進了疫情後市場更強勁的復甦和成長軌跡。

預計農業廢棄物部分在預測期內將佔最大佔有率

由於農場和收穫後階段產生的產品專用廢棄物數量龐大,預計農業廢棄物領域將在預測期內佔據最大的市場佔有率。這包括作物殘渣、變質農產品以及酪農、家禽和園藝等行業的加工廢棄物。這個領域佔據主導地位的原因在於其高濃度的有機物,這些有機物非常適合各種回收技術,例如厭氧消化和堆肥。此外,農業部門面臨越來越大的監管壓力,要求其永續地管理廢棄物,這進一步推動了該領域的應用,並鞏固了其市場主導地位。

預測期內厭氧消化領域預計將以最高複合年成長率成長

預計厭氧消化領域將在預測期內達到最高成長率。這是由於該技術具有雙重產出優勢,既能生產可再生能源(沼氣),又能產生營養豐富的消化物,從而提升了其經濟吸引力。再生能源來源和政府推出的嚴格政策,推動有機廢棄物從掩埋轉移,是主要的成長催化劑。此外,持續的技術進步提高了製程效率和甲烷產量,使厭氧消化成為大型工業和市政食品廢棄物日益可行且更具吸引力的解決方案,從而推動了其快速普及。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率,這得益於其龐大的人口、快速的都市化以及不斷成長的城市和農業廢棄物廢棄物。中國、印度和韓國政府已實施嚴格的廢棄物管理法規,並大力投資垃圾焚化發電基礎設施,以解決垃圾掩埋過度擁擠和嚴重污染的問題。此外,不斷成長的工業部門和政府對發展循環經濟的日益重視,為回收技術創造了肥沃的土壤。高廢棄物量和強力的監管促進因素的結合,鞏固了該地區的主導地位。

複合年成長率最高的地區:

預計歐洲地區在預測期內的複合年成長率最高。這得歸功於其擁有非常強大的法規結構,例如《循環經濟行動計畫》和《掩埋指令》,這些框架積極要求回收有機廢棄物,並對處置行為處以罰款。高水準的技術應用和政府對創新生物經濟計劃的大量資助為成長奠定了堅實的基礎。此外,完善的廢棄物收集基礎設施以及消費者和企業對永續性的高度重視,正在加速先進回收解決方案的部署,使歐洲成為成長最快的市場。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球食品廢棄物回收市場(依食品廢棄物類型)

  • 農業廢棄物
  • 食品加工廢棄物
  • 家庭和零售廢棄物

6. 全球食品廢棄物回收市場(依回收技術)

  • 厭氧消化
  • 堆肥
  • 發酵
  • 酵素水解
  • 其他有價值的技術

7. 全球食品廢棄物回收市場(按應用)

  • 生質燃料和生質能源
  • 動物飼料
  • 肥料和土壤改良劑
  • 食品配料和添加劑
  • 生質塑膠和包裝材料
  • 其他用途

8. 全球食品廢棄物回收市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第9章:主要進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第10章:企業概況

  • Veolia Environnement SA
  • SUEZ Group
  • Waste Management, Inc.
  • Republic Services, Inc.
  • Clean Harbors, Inc.
  • Stericycle, Inc.
  • FCC Environment Ltd.
  • Advanced Disposal Services, Inc.
  • The Waste Transformers
  • Winnow Solutions
  • Rendisk
  • Organic Waste Systems
  • Harvest Power
  • The Coffee Cherry Co
  • Fruitleather
  • Rubies in the Rubble
Product Code: SMRC30920

According to Stratistics MRC, the Global Food Waste Valorization Market is accounted for $58.7 billion in 2025 and is expected to reach $85.9 billion by 2032 growing at a CAGR of 5.6% during the forecast period. Food waste valorization converts food industry by-products and discarded organic waste into valuable products such as biofuels, animal feed, fertilizers, or biochemicals. This process addresses environmental challenges from food waste accumulation while contributing to circular economy models. Techniques include anaerobic digestion, fermentation, enzymatic treatment, and chemical extraction, enabling the recovery of energy, nutrients, and functional compounds. Applied in agriculture, energy, and chemical industries, food waste valorization improves sustainability, reduces greenhouse gas emissions, and enhances resource efficiency, contributing to global efforts toward waste reduction and renewable resource utilization.

According to the Food and Agriculture Organization of the United Nations (FAO), one-third of consumable food produced for human utilization is estimated to be wasted or lost, equivalent to 1.3 billion tonnes annually.

Market Dynamics:

Driver:

Global push to reduce food waste and GHG emissions

The global imperative to mitigate climate change is a primary market driver, compelling governments and corporations to adopt stringent sustainability mandates. Policies like the UN SDGs and the EU's Farm to Fork Strategy directly incentivize waste valorization by setting concrete reduction targets and penalizing landfill disposal. This regulatory pressure, coupled with corporate ESG commitments, transforms food waste from a disposal liability into a valuable resource for circular economy models. Additionally, the direct link between decomposing organic matter in landfills and methane generation underscores the critical role of valorization in achieving significant GHG emission reductions, thus accelerating market adoption.

Restraint:

High logistics and preprocessing costs

A significant barrier to market expansion is the substantial capital and operational expenditure required for the collection, transportation, and initial processing of heterogeneous food waste. The logistical network for gathering dispersed waste streams is complex and cost-intensive, necessitating specialized handling and refrigeration to prevent spoilage. Moreover, preprocessing steps such as sorting, cleaning, and size reduction are essential yet add considerable operational overhead. These high upfront costs can deter investment, particularly for small-to-medium enterprises, and challenge the economic viability of valorization projects compared to traditional low-cost disposal methods like landfilling.

Opportunity:

Integration into smart city waste systems

IoT-enabled smart bins can optimize collection routes, reducing logistics costs and improving efficiency. Advanced data analytics can forecast waste generation patterns, allowing for better planning of preprocessing and conversion facility operations. This digital integration creates a centralized, intelligent waste management ecosystem that enhances the economic feasibility of valorization. It also enables municipal authorities to track progress towards sustainability goals in real time, fostering further public and private investment.

Threat:

Public perception and safety concerns

Market growth is threatened by public apprehension regarding the safety and quality of products derived from waste streams, particularly in applications like animal feed and biofuels. Concerns about potential contaminant transfer, such as pathogens or heavy metals, can trigger stringent regulatory hurdles and slow approval processes for new technologies. Moreover, the "waste-to-product" concept may face consumer resistance and a lack of social acceptance, stigmatizing end-products and limiting their market penetration. This negative perception can deter brand association and investment, posing a significant risk to the commercialization and scalability of innovative valorization technologies.

Covid-19 Impact:

The Covid-19 pandemic initially disrupted the food waste valorization market through supply chain paralysis, lockdowns, and the temporary closure of food service establishments, which altered waste generation patterns and volumes. Project delays ensued due to social distancing mandates and capital reallocation. However, the crisis also heightened awareness of supply chain vulnerabilities and the importance of sustainable, localized resource management. This has accelerated long-term policy support and investment in circular economy models as a means of building resilience, ultimately fostering a more robust recovery and growth trajectory for the market post-pandemic.

The agricultural waste segment is expected to be the largest during the forecast period

The agricultural waste segment is expected to account for the largest market share during the forecast period due to the immense volume of by-products generated at the farm and post-harvest stages. This includes crop residues, spoiled produce, and processing waste from industries like dairy, poultry, and horticulture. The segment's dominance is fueled by the high concentration of organic material, which is highly amenable to various valorization technologies such as anaerobic digestion and composting. Additionally, the agricultural sector faces increasing regulatory pressure to manage its waste sustainably, further driving adoption and solidifying this segment's leading market position.

The anaerobic digestion segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the anaerobic digestion segment is predicted to witness the highest growth rate. This is attributed to the technology's dual-output advantage, producing both renewable energy (biogas) and nutrient-rich digestate, enhancing its economic appeal. Stringent government policies promoting renewable energy sources and organic waste diversion from landfills are key growth catalysts. Moreover, continuous technological advancements improving process efficiency and methane yield make anaerobic digestion an increasingly viable and attractive solution for large-scale industrial and municipal food waste processors, fueling its rapid adoption.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by its massive population, rapid urbanization, and escalating volumes of municipal and agricultural waste. Governments in China, India, and South Korea are implementing stringent waste management regulations and investing heavily in waste-to-energy infrastructure to address landfill overcrowding and severe pollution. Furthermore, the growing industrial sector and increasing governmental focus on developing a circular economy create fertile ground for valorization technologies. This combination of high waste volume and strong regulatory impetus cements the region's dominant share.

Region with highest CAGR:

Over the forecast period, the Europe region is anticipated to exhibit the highest CAGR due to its exceptionally robust regulatory framework, including the Circular Economy Action Plan and the Landfill Directive, which aggressively mandate organic waste recycling and penalize disposal. High levels of technological adoption and significant government funding for innovative bioeconomy projects provide a strong foundation for growth. Moreover, well-established waste collection infrastructure and intense consumer and corporate focus on sustainability accelerate the deployment of advanced valorization solutions, positioning Europe as the fastest-growing market.

Key players in the market

Some of the key players in Food Waste Valorization Market include Veolia Environnement S.A., SUEZ Group, Waste Management, Inc., Republic Services, Inc., Clean Harbors, Inc., Stericycle, Inc., FCC Environment Ltd., Advanced Disposal Services, Inc., The Waste Transformers, Winnow Solutions, Rendisk, Organic Waste Systems, Harvest Power, The Coffee Cherry Co, Fruitleather, and Rubies.

Key Developments:

In October 2024, Veolia launched an advanced depackaging facility in Australia for Woolworths, processing up to 15,000 tonnes of packaged food annually. The facility automatically separates expired packaged food from packaging, enabling food conversion into compost and packaging recycling.

In June 2024, SUEZ has partnered with AFYREN to upcycle municipal organic waste into natural, low-carbon ingredients using unique fermentation technology. This collaboration supports the creation of value from organic waste.

In March 2024, SUEZ partnered with AFYREN in a collaboration to develop new ways of creating value from organic waste. The initiative focuses on converting organic waste collected by SUEZ into natural, low-carbon ingredients using fermentation technology.

Type of Food Wastes Covered:

  • Agricultural Waste
  • Food Processing Waste
  • Household and Retail Waste

Technologies Covered:

  • Anaerobic Digestion
  • Composting
  • Fermentation
  • Enzymatic Hydrolysis
  • Other Emerging Technologies

Applications Covered:

  • Biofuels and Bioenergy
  • Animal Feed
  • Fertilizers and Soil Amendments
  • Food Ingredients and Additives
  • Bioplastics and Packaging Materials
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Food Waste Valorization Market, By Type of Food Waste

  • 5.1 Introduction
  • 5.2 Agricultural Waste
  • 5.3 Food Processing Waste
  • 5.4 Household and Retail Waste

6 Global Food Waste Valorization Market, By Valorization Technology

  • 6.1 Introduction
  • 6.2 Anaerobic Digestion
  • 6.3 Composting
  • 6.4 Fermentation
  • 6.5 Enzymatic Hydrolysis
  • 6.6 Other Emerging Technologies

7 Global Food Waste Valorization Market, By Application

  • 7.1 Introduction
  • 7.2 Biofuels and Bioenergy
  • 7.3 Animal Feed
  • 7.4 Fertilizers and Soil Amendments
  • 7.5 Food Ingredients and Additives
  • 7.6 Bioplastics and Packaging Materials
  • 7.7 Other Applications

8 Global Food Waste Valorization Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Veolia Environnement S.A.
  • 10.2 SUEZ Group
  • 10.3 Waste Management, Inc.
  • 10.4 Republic Services, Inc.
  • 10.5 Clean Harbors, Inc.
  • 10.6 Stericycle, Inc.
  • 10.7 FCC Environment Ltd.
  • 10.8 Advanced Disposal Services, Inc.
  • 10.9 The Waste Transformers
  • 10.10 Winnow Solutions
  • 10.11 Rendisk
  • 10.12 Organic Waste Systems
  • 10.13 Harvest Power
  • 10.14 The Coffee Cherry Co
  • 10.15 Fruitleather
  • 10.16 Rubies in the Rubble

List of Tables

  • Table 1 Global Food Waste Valorization Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Food Waste Valorization Market Outlook, By Type of Food Waste (2024-2032) ($MN)
  • Table 3 Global Food Waste Valorization Market Outlook, By Agricultural Waste (2024-2032) ($MN)
  • Table 4 Global Food Waste Valorization Market Outlook, By Food Processing Waste (2024-2032) ($MN)
  • Table 5 Global Food Waste Valorization Market Outlook, By Household and Retail Waste (2024-2032) ($MN)
  • Table 6 Global Food Waste Valorization Market Outlook, By Valorization Technology (2024-2032) ($MN)
  • Table 7 Global Food Waste Valorization Market Outlook, By Anaerobic Digestion (2024-2032) ($MN)
  • Table 8 Global Food Waste Valorization Market Outlook, By Composting (2024-2032) ($MN)
  • Table 9 Global Food Waste Valorization Market Outlook, By Fermentation (2024-2032) ($MN)
  • Table 10 Global Food Waste Valorization Market Outlook, By Enzymatic Hydrolysis (2024-2032) ($MN)
  • Table 11 Global Food Waste Valorization Market Outlook, By Other Emerging Technologies (2024-2032) ($MN)
  • Table 12 Global Food Waste Valorization Market Outlook, By Application (2024-2032) ($MN)
  • Table 13 Global Food Waste Valorization Market Outlook, By Biofuels and Bioenergy (2024-2032) ($MN)
  • Table 14 Global Food Waste Valorization Market Outlook, By Animal Feed (2024-2032) ($MN)
  • Table 15 Global Food Waste Valorization Market Outlook, By Fertilizers and Soil Amendments (2024-2032) ($MN)
  • Table 16 Global Food Waste Valorization Market Outlook, By Food Ingredients and Additives (2024-2032) ($MN)
  • Table 17 Global Food Waste Valorization Market Outlook, By Bioplastics and Packaging Materials (2024-2032) ($MN)
  • Table 18 Global Food Waste Valorization Market Outlook, By Other Applications (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.