封面
市場調查報告書
商品編碼
1813377

2032 年生物醫學紡織品市場預測:按纖維類型、織物類型、應用、最終用戶和地區進行的全球分析

Biomedical Textiles Market Forecasts to 2032 - Global Analysis By Fiber Type, Fabric Type, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球生物醫學紡織品市場預計在 2025 年達到 138 億美元,到 2032 年將達到 196 億美元,預測期內的複合年成長率為 5.2%。

生物醫用紡織品是專為醫療和生物應用而設計的人造纖維材料。這些紡織品用於植入式器械、創傷護理手術和衛生產品,這些領域對生物相容性、耐用性和無菌性至關重要。這些紡織品包括機織、針織、編織和不織布結構,旨在與人體組織和體液安全接觸。其應用範圍廣泛,從縫合線、血管移植物到防護衣和組織支架,其性能取決於機械性能、生物分解性和法規遵循。

老年人口和慢性病日益增多

老齡化社會通常需要植入式和非植入式醫用紡織品來用於創傷護理、手術支持和復健。這種人口結構的變化加速了對具有生物相容性、耐用性和抗感染性的先進紡織品解決方案的需求。此外,文明病的增加也促使醫療保健提供者採用紡織品整合設備進行長期病患管理。這些趨勢正在推動紡織工程的創新,並擴大生物醫學紡織品在臨床領域的應用範圍。

電子紡織品整合的複雜性

儘管技術不斷進步,將電子產品與生物醫學紡織品整合仍然是一項重大挑戰。感測器、導電紗線和軟性基材的整合需要精密的工程設計,才能在不影響病患安全或舒適度的情況下保持功能性。由於嵌入式電子產品必須符合嚴格的醫療標準,法規遵循性又增加了複雜性。這些因素導致研發成本高昂,並限制了擴充性,尤其對於希望進入市場的新興企業和中型企業。

再生醫學、組織工程和微創產品開發

生物可吸收纖維和電紡奈米材料的創新正在推動支持細胞生長和組織再生的植入的開發。這些纖維也被整合到微創手術器械中,從而提高手術精度並縮短恢復時間。纖維科學與生物技術的融合正在為個人化醫療開闢新的途徑,尤其是在整形外科、心血管修復和創傷治療。與學術機構和政府支持的研究舉措的合作正在進一步加速該領域的產品開發,為投資和創新創造了肥沃的土壤。

可能的替代產品

市場面臨來自替代技術的競爭壓力,例如生物工程植入、合成移植物和智慧聚合物,這些技術能夠提供類似甚至更好的治療效果。這些替代方案有望減少對傳統纖維解決方案的依賴,尤其是在血管移植物和神經介面等高性能應用中。此外,3D列印和組織工程的進步使得客製化植入的生產成為可能,從而避免了對編織或針織結構的需求。

COVID-19的影響:

新冠疫情對生物醫學紡織品產業產生了雙重影響。一方面,供應鏈中斷和生產延誤尤其阻礙了可植入產品的生產和分銷。另一方面,這場危機也加速了對用於急性護理和居家醫療保健的抗菌紡織品、個人防護裝備以及創傷護理紡織品的需求。向分散式醫療保健和遠端監控的轉變也增加了人們對整合感測器的穿戴式生物醫學紡織品的興趣。

預測期內,不可生物分解纖維市場預計將佔最大佔有率

不可生物分解纖維因其卓越的機械強度、耐化學性和長期穩定性,預計將在預測期內佔據最大的市場佔有率。這些纖維,例如聚酯、聚丙烯和聚四氟乙烯,廣泛用於縫線、血管移植物和整形外科植入,而這些應用對耐用性至關重要。它們與滅菌過程相容,即使在生理壓力下也能保持結構完整性,使其成為永久性或半永久性醫療應用的理想選擇,確保其在臨床應用中的持續相關性。

心血管植入領域預計將在預測期內以最高複合年成長率成長

心血管植入領域預計將在預測期內實現最高成長率,這得益於心臟病盛行率的上升以及基於紡織品的支架、補片和移植物日益普及。該領域的生物醫用紡織品旨在模擬天然組織的彈性和孔隙度,促進內皮化並降低血栓形成的風險。隨著微創心血管手術的日益普及,在優惠的報銷政策和不斷擴展的外科基礎設施的支持下,對靈活、生物相容性的紡織植入的需求正在飆升。

佔比最大的地區:

在預測期內,北美預計將佔據最大的市場佔有率,這得益於其先進的醫療基礎設施、強大的醫療設備製造商以及創新外科解決方案的高採用率。該地區受益於充足的研發資金、簡化的監管途徑以及日益成長的需要慢性病護理干預的老年人口。學術機構和產業參與者之間的策略夥伴關係正在促進纖維基植入和敷料的快速商業化。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率,這得益於醫療保健涵蓋範圍的擴大、慢性病負擔的增加以及政府推動醫療創新的舉措。在有利的貿易政策和不斷成長的出口需求的支持下,該地區的紡織業也正利用其生產能力進軍生物醫藥領域。當地新興企業和研究機構正在探索符合當地需求的經濟高效的解決方案,例如可生物分解的傷口敷料和內建感測器的康復服。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球生物醫學紡織品市場(依纖維類型)

  • 不可生物分解的纖維
    • 聚丙烯(PP)
    • 聚乙烯(PE)
    • 聚酯纖維(PET)
    • 聚醯胺
    • 聚四氟乙烯
  • 可生物分解纖維
    • 棉布
    • 黏膠人造絲
    • 膠原蛋白
    • 幾丁質

6. 全球生物醫學紡織品市場(依布料類型)

  • 編織
  • 不織布
  • 針織及針織布料
  • 中空布料
  • 其他布料類型

7. 全球生物醫學紡織品市場(按應用)

  • 手術縫合線和結紮線
  • 軟組織植入
  • 心血管植入
  • 組織工程支架
  • 創傷護理敷料
  • 繃帶和OK繃
  • 壓力服和手術用織物
  • 體外裝置
  • 衛生棉和嬰兒尿布
  • 其他用途

8. 全球生物醫學紡織品市場(依最終用戶)

  • 門診中心
  • 醫院和診所
  • 社區醫療保健
  • 整形外科診所
  • 其他最終用戶

9. 全球生物醫學紡織品市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第10章:重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第11章 公司概況

  • Atex Technologies, Inc.
  • B. Braun Melsungen AG
  • Bally Ribbon Mills
  • Cardinal Health, Inc.
  • Confluent Medical Technologies
  • DSM(dsm-firmenich)
  • Freudenberg Group
  • Integra LifeSciences Corporation
  • Johnson & Johnson
  • Medline Industries, Inc.
  • Medtronic PLC
  • Meister & Cie AG
  • Poly-Med Incorporated
  • Secant Group, LLC
  • Smith & Nephew PLC
  • Swicofil AG
  • Getinge AB
  • Paul Hartmann AG
  • Asahi Kasei Corporation
  • Cortland Biomedical
Product Code: SMRC30824

According to Stratistics MRC, the Global Biomedical Textiles Market is accounted for $13.8 billion in 2025 and is expected to reach $19.6 billion by 2032 growing at a CAGR of 5.2% during the forecast period. Biomedical textiles are engineered fibrous materials specifically designed for medical and biological applications. These textiles are used in implantable devices, wound care, surgical procedures, and hygiene products, where biocompatibility, durability, and sterilizability are critical. They include woven, knitted, braided, and nonwoven structures tailored to interact safely with human tissues and fluids. Applications range from sutures and vascular grafts to protective clothing and tissue scaffolds, with performance governed by mechanical properties, biodegradability, and regulatory compliance

Market Dynamics:

Driver:

Growing geriatric population & rising incidence of chronic diseases

Aging individuals often require implantable and non-implantable medical textiles for wound care, surgical support, and rehabilitation. This demographic shift is accelerating demand for advanced textile-based solutions that offer biocompatibility, durability, and infection resistance. Moreover, the rise in lifestyle-related diseases is prompting healthcare providers to adopt textile-integrated devices for long-term patient management. These trends are fostering innovation in fiber engineering and expanding the scope of biomedical textile applications across clinical settings.

Restraint:

Complexity of electronic-textile integration

Despite technological advancements, integrating electronics with biomedical textiles remains a significant challenge. The fusion of sensors, conductive threads, and flexible substrates requires precise engineering to maintain functionality without compromising patient safety or comfort. Regulatory compliance adds another layer of complexity, as embedded electronics must meet stringent medical standards. These factors contribute to high R&D costs and limit scalability, particularly for startups and mid-sized firms aiming to enter the market.

Opportunity:

Regenerative medicine, tissue engineering & development of minimally invasive products

Innovations in bioresorbable fibers and electrospun nanomaterials are enabling the development of implants that support cell growth and tissue regeneration. These textiles are also being integrated into minimally invasive surgical tools, enhancing precision and reducing recovery times. The convergence of textile science with biotechnology is opening new avenues for personalized medicine, especially in orthopedics, cardiovascular repair, and wound healing. Academic collaborations and government-backed research initiatives are further accelerating product development in this space, making it a fertile ground for investment and innovation.

Threat:

Potential for substitute products

The market faces competitive pressure from alternative technologies such as bioengineered implants, synthetic grafts, and smart polymers that offer similar or superior therapeutic outcomes. These substitutes may reduce reliance on traditional textile-based solutions, especially in high-performance applications like vascular grafts or neural interfaces. Additionally, advancements in 3D printing and tissue engineering are enabling the fabrication of customized implants that bypass the need for woven or knitted structures.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the biomedical textiles sector. On one hand, supply chain disruptions and manufacturing delays hindered production and distribution, especially for implantable products. On the other hand, the crisis accelerated demand for antimicrobial fabrics, PPE, and wound care textiles used in emergency and home-care settings. The shift toward decentralized healthcare and remote monitoring also boosted interest in wearable biomedical textiles embedded with sensors.

The non-biodegradable fibers segment is expected to be the largest during the forecast period

The non-biodegradable fibers segment is expected to account for the largest market share during the forecast period due to their superior mechanical strength, chemical resistance, and long-term stability. These fibers such as polyester, polypropylene, and PTFE are widely used in sutures, vascular grafts, and orthopedic implants where durability is critical. Their compatibility with sterilization processes and ability to maintain structural integrity under physiological stress make them ideal for permanent or semi-permanent medical applications ensuring their continued relevance in clinical use.

The cardiovascular implants segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cardiovascular implants segment is predicted to witness the highest growth rate driven by the rising prevalence of heart diseases and the growing adoption of textile-based stents, patches, and grafts. Biomedical textiles in this domain are engineered to mimic the elasticity and porosity of native tissues, promoting endothelialization and reducing thrombogenic risks. As minimally invasive cardiac procedures become more common, demand for flexible, biocompatible textile implants is surging, supported by favorable reimbursement policies and expanding surgical infrastructure.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to its advanced healthcare infrastructure, strong presence of medical device manufacturers, and high adoption of innovative surgical solutions. The region benefits from robust R&D funding, streamlined regulatory pathways, and a growing elderly population requiring chronic care interventions. Strategic partnerships between academic institutions and industry players are fostering rapid commercialization of textile-based implants and dressings.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by expanding healthcare access, rising chronic disease burden, and government initiatives promoting medical innovation. The region's textile industry is also leveraging its production capabilities to enter the biomedical space, supported by favorable trade policies and growing export demand. Local startups and research institutions are exploring cost-effective solutions tailored to regional needs, including biodegradable wound dressings and sensor-embedded rehabilitation garments.

Key players in the market

Some of the key players in Biomedical Textiles Market include Atex Technologies, Inc., B. Braun Melsungen AG, Bally Ribbon Mills, Cardinal Health, Inc., Confluent Medical Technologies, DSM (dsm-firmenich), Freudenberg Group, Integra LifeSciences Corporation, Johnson & Johnson, Medline Industries, Inc., Medtronic PLC, Meister & Cie AG, Poly-Med Incorporated, Secant Group, LLC, Smith & Nephew PLC, Swicofil AG, Getinge AB, Paul Hartmann AG, Asahi Kasei Corporation, and Cortland Biomedical.

Key Developments:

In August 2025, Meister launched its OceanYarn(R) line using recycled ocean-bound plastic, now featured in Schaffner AG's iconic Spaghetti Chair. This partnership highlights sustainable design in Swiss textile innovation. The yarns offer durability and eco-certification for high-end applications.

In July 2025, Getinge expanded its portfolio with the launch of Vasoview Hemopro 3 and a partnership with Zimmer Biomet targeting the ASC segment. The company also reported 4.1% organic sales growth and improved EBITA margins. Paragonix integration exceeded expectations, boosting profitability.

In April 2025, Poly-Med expanded its global footprint with new manufacturing sites and strategic acquisitions to meet rising demand in critical care and cardiology. The company reported 16.6% YoY revenue growth and launched 15+ new products. Its innovation push positions it as a key player in India's medtech sector.

Fiber Types Covered:

  • Non-Biodegradable Fibers
  • Biodegradable Fibers

Fabric Types Covered:

  • Woven
  • Non-Woven
  • Knitted & Braided Fabrics
  • Hollow Fabrics
  • Other Fabric Types

Applications Covered:

  • Surgical Sutures & Ligatures
  • Soft Tissue Implants
  • Cardiovascular Implants
  • Tissue Engineering Scaffolds
  • Wound Care Dressings
  • Bandages & Plasters
  • Compression Garments & Surgical Textiles
  • Extracorporeal Devices
  • Sanitary Napkins & Baby Diapers
  • Other Applications

Technologies Covered:

  • Online Monitoring Systems
  • Offline Monitoring Systems
  • Remote Monitoring Systems

End Users Covered:

  • Ambulatory Centers
  • Hospitals & Clinics
  • Community Healthcare
  • Orthopedic Clinics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biomedical Textiles Market, By Fiber Type

  • 5.1 Introduction
  • 5.2 Non-Biodegradable Fibers
    • 5.2.1 Polypropylene (PP)
    • 5.2.2 Polyethylene (PE)
    • 5.2.3 Polyester (PET)
    • 5.2.4 Polyamide
    • 5.2.5 Polytetrafluoroethylene
  • 5.3 Biodegradable Fibers
    • 5.3.1 Cotton
    • 5.3.2 Viscose Rayon
    • 5.3.3 Collagen
    • 5.3.4 Chitin

6 Global Biomedical Textiles Market, By Fabric Type

  • 6.1 Introduction
  • 6.2 Woven
  • 6.3 Non-Woven
  • 6.4 Knitted & Braided Fabrics
  • 6.5 Hollow Fabrics
  • 6.6 Other Fabric Types

7 Global Biomedical Textiles Market, By Application

  • 7.1 Introduction
  • 7.2 Surgical Sutures & Ligatures
  • 7.3 Soft Tissue Implants
  • 7.4 Cardiovascular Implants
  • 7.5 Tissue Engineering Scaffolds
  • 7.6 Wound Care Dressings
  • 7.7 Bandages & Plasters
  • 7.8 Compression Garments & Surgical Textiles
  • 7.9 Extracorporeal Devices
  • 7.10 Sanitary Napkins & Baby Diapers
  • 7.11 Other Applications

8 Global Biomedical Textiles Market, By End User

  • 8.1 Introduction
  • 8.2 Ambulatory Centers
  • 8.3 Hospitals & Clinics
  • 8.4 Community Healthcare
  • 8.5 Orthopedic Clinics
  • 8.6 Other End Users

9 Global Biomedical Textiles Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Atex Technologies, Inc.
  • 11.2 B. Braun Melsungen AG
  • 11.3 Bally Ribbon Mills
  • 11.4 Cardinal Health, Inc.
  • 11.5 Confluent Medical Technologies
  • 11.6 DSM (dsm-firmenich)
  • 11.7 Freudenberg Group
  • 11.8 Integra LifeSciences Corporation
  • 11.9 Johnson & Johnson
  • 11.10 Medline Industries, Inc.
  • 11.11 Medtronic PLC
  • 11.12 Meister & Cie AG
  • 11.13 Poly-Med Incorporated
  • 11.14 Secant Group, LLC
  • 11.15 Smith & Nephew PLC
  • 11.16 Swicofil AG
  • 11.17 Getinge AB
  • 11.18 Paul Hartmann AG
  • 11.19 Asahi Kasei Corporation
  • 11.20 Cortland Biomedical

List of Tables

  • Table 1 Global Biomedical Textiles Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Biomedical Textiles Market Outlook, By Fiber Type (2024-2032) ($MN)
  • Table 3 Global Biomedical Textiles Market Outlook, By Non-Biodegradable Fibers (2024-2032) ($MN)
  • Table 4 Global Biomedical Textiles Market Outlook, By Polypropylene (PP) (2024-2032) ($MN)
  • Table 5 Global Biomedical Textiles Market Outlook, By Polyethylene (PE) (2024-2032) ($MN)
  • Table 6 Global Biomedical Textiles Market Outlook, By Polyester (PET) (2024-2032) ($MN)
  • Table 7 Global Biomedical Textiles Market Outlook, By Polyamide (2024-2032) ($MN)
  • Table 8 Global Biomedical Textiles Market Outlook, By Polytetrafluoroethylene (2024-2032) ($MN)
  • Table 9 Global Biomedical Textiles Market Outlook, By Biodegradable Fibers (2024-2032) ($MN)
  • Table 10 Global Biomedical Textiles Market Outlook, By Cotton (2024-2032) ($MN)
  • Table 11 Global Biomedical Textiles Market Outlook, By Viscose Rayon (2024-2032) ($MN)
  • Table 12 Global Biomedical Textiles Market Outlook, By Collagen (2024-2032) ($MN)
  • Table 13 Global Biomedical Textiles Market Outlook, By Chitin (2024-2032) ($MN)
  • Table 14 Global Biomedical Textiles Market Outlook, By Fabric Type (2024-2032) ($MN)
  • Table 15 Global Biomedical Textiles Market Outlook, By Woven (2024-2032) ($MN)
  • Table 16 Global Biomedical Textiles Market Outlook, By Non-Woven (2024-2032) ($MN)
  • Table 17 Global Biomedical Textiles Market Outlook, By Knitted & Braided Fabrics (2024-2032) ($MN)
  • Table 18 Global Biomedical Textiles Market Outlook, By Hollow Fabrics (2024-2032) ($MN)
  • Table 19 Global Biomedical Textiles Market Outlook, By Other Fabric Types (2024-2032) ($MN)
  • Table 20 Global Biomedical Textiles Market Outlook, By Application (2024-2032) ($MN)
  • Table 21 Global Biomedical Textiles Market Outlook, By Surgical Sutures & Ligatures (2024-2032) ($MN)
  • Table 22 Global Biomedical Textiles Market Outlook, By Soft Tissue Implants (2024-2032) ($MN)
  • Table 23 Global Biomedical Textiles Market Outlook, By Cardiovascular Implants (2024-2032) ($MN)
  • Table 24 Global Biomedical Textiles Market Outlook, By Tissue Engineering Scaffolds (2024-2032) ($MN)
  • Table 25 Global Biomedical Textiles Market Outlook, By Wound Care Dressings (2024-2032) ($MN)
  • Table 26 Global Biomedical Textiles Market Outlook, By Bandages & Plasters (2024-2032) ($MN)
  • Table 27 Global Biomedical Textiles Market Outlook, By Compression Garments & Surgical Textiles (2024-2032) ($MN)
  • Table 28 Global Biomedical Textiles Market Outlook, By Extracorporeal Devices (2024-2032) ($MN)
  • Table 29 Global Biomedical Textiles Market Outlook, By Sanitary Napkins & Baby Diapers (2024-2032) ($MN)
  • Table 30 Global Biomedical Textiles Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 31 Global Biomedical Textiles Market Outlook, By End User (2024-2032) ($MN)
  • Table 32 Global Biomedical Textiles Market Outlook, By Ambulatory Centers (2024-2032) ($MN)
  • Table 33 Global Biomedical Textiles Market Outlook, By Hospitals & Clinics (2024-2032) ($MN)
  • Table 34 Global Biomedical Textiles Market Outlook, By Community Healthcare (2024-2032) ($MN)
  • Table 35 Global Biomedical Textiles Market Outlook, By Orthopedic Clinics (2024-2032) ($MN)
  • Table 36 Global Biomedical Textiles Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.