封面
市場調查報告書
商品編碼
1813318

植物性因組學市場預測(至 2032 年):按類型、目的、屬性、應用、最終用戶和地區進行的全球分析

Plant Genomics Market Forecasts to 2032 - Global Analysis By Type (Molecular Engineering, Genetic Engineering, Genome Editing, DNA Sequencing, Marker-Assisted Selection, Bioinformatics), Objective, Trait, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球植物性因組學市場預計在 2025 年達到 115 億美元,到 2032 年將達到 197 億美元,預測期內的複合年成長率為 8.01%。

植物性因體學是一門綜合研究植物性因組結構、功能、演化、繪圖和編輯的學科,旨在了解基因組成並提高農業生產力。透過植物DNA序列測定、分析和比較,可以識別出決定產量、抗病性、抗逆性和營養價值等性狀的基因。植物性因組學整合了分子生物學、生物資訊學和生物技術,利用標記輔助育種、基因改造方法和CRISPR等基因組編輯工具,促進基因改造作物的開發。該領域支持永續農業,增強糧食安全,並應對氣候變遷、資源匱乏和人口需求成長等全球挑戰。

研究表明,嚴重的蛋白質和熱量營養不良影響著開發中國家約2-10%的1至9歲兒童。

糧食需求和人口成長迅速

全球糧食需求激增和人口快速成長正在推動植物性因組學市場的創新。這些壓力正在推動對產量、氣候適應性作物的投資,並加速基因組學工具在精準育種上的應用。各國政府和農業技術公司正優先發展永續農業,並加強基因編輯和性狀圖譜的研發。隨著人口結構變化給糧食系統帶來壓力,植物性因組學正成為一種變革性的解決方案,旨在提高不同地區的生產力、營養價值和生態系統的復原力,從而推動市場擴張。

高成本和經濟障礙

高昂的成本和資金壁壘嚴重阻礙了植物性因組學市場的成長,限制了人們獲得先進定序技術和生物資訊學工具。中小企業,尤其是新興國家的中小企業,難以在研發方面進行投資,減緩了創新和商業化進程。這些限制因素也阻礙了學術合作和官民合作關係,阻礙了作物改良、永續性和糧食安全的進展。

永續精密農業的興起

永續農業和精準農業的蓬勃發展,正推動植物性因組學市場的爆炸性成長。基因組學能夠培育出適應氣候變遷、營養豐富且抗病蟲害的作物,這與注重環保的農業目標完美契合。 CRISPR和基因組選擇等精準工具能夠加速性狀發現,減少對投入的依賴,並提高產量的可預測性。這種協同效應正在開闢新的投資管道,尤其是在亞太地區和非洲地區,同時促進糧食安全和環境永續性,使植物性因組學成為下一代農業的基石。

監管障礙和全球碎片化

監管障礙和全球碎片化正在對植物性因組學市場產生負面和抑製作用。不同地區嚴格且不一致的法規導致產品核可延遲,抑制創新,並增加企業的合規成本。缺乏國際協調的政策進一步加劇了合作、數據共用和跨境研究的複雜性。這些挑戰減緩了先進基因組學技術的採用,限制了市場擴張,並削弱了該領域推動農業創新的潛力。

COVID-19的影響

新冠疫情對植物性因體學市場產生了多方面的影響。最初,供應鏈中斷、研究活動受限以及農業計劃延期阻礙了市場成長。然而,疫情凸顯了韌性糧食體系的重要性,並加速了作物研究和先進基因組學的投資,以確保糧食安全。對永續農業、抗病作物的需求成長以及生產力的提高最終推動了市場復甦,並促使人們重新關注創新。

生物資訊學領域預計將成為預測期內最大的領域

生物資訊學領域預計將在預測期內佔據最大市場佔有率,因為其整合加速了基因組序列測定,增強了作物抗逆力建模,並簡化了基因編輯工作流程。透過快速且準確地解碼複雜的植物性因組,生物資訊學使研究人員能夠開發適應氣候的產量品種。這種數據主導的方法正在開啟農業、生物技術和糧食安全領域的新商業性應用,使生物資訊學成為植物性因組學創新和永續影響的關鍵推動者。

預計在預測期內,抗蟲性領域將以最高的複合年成長率成長。

在基因工程和基於CRISPR的作物保護技術創新的推動下,抗蟲性領域預計將在預測期內實現最高成長率。抗蟲性狀透過減少對農藥的依賴並提高產量穩定性,正在加速基因改造和基因組編輯作物的推廣應用。該領域正在推動對先進體學作物和精準育種工具的需求,尤其是在面臨氣候驅動蟲害壓力的地區。其影響是變革性的,透過培育具有韌性的高性能作物品種,可以提高永續性、農民的盈利和全球糧食安全。

佔比最大的地區:

預計亞太地區將在預測期內佔據最大的市場佔有率,這得益於對糧食安全和氣候智慧型農業日益成長的需求、基因組學賦能的精準育種以及不同作物抗病性的提升。該地區的政府和研究機構正在透過策略性投資和合作研究加速技術創新。這一勢頭正在推動環境友善實踐,減少對化學品的依賴,並透過數據主導的解決方案賦能農民,使亞太地區成為農業生物技術進步的活力中心。

複合年成長率最高的地區:

預計北美地區在預測期內的複合年成長率最高。這得歸功於生物技術的進步、政府的支持措施以及成熟的農業部門。農民和研究人員擴大採用基因組工具,從而提高了作物的產量、品質以及對疾病和環境壓力的抵抗力。研究機構和農業技術公司之間的合作進一步激發了創新,使該地區成為精密農業的領導者。這些因素的結合將增強北美的糧食安全和永續農業。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 區域細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球植物性因體學市場類型

  • 分子工程
  • 基因工程
  • 基因組編輯
  • DNA定序
  • 標記輔助選擇
  • 生物資訊學

6. 全球植物性因體學市場(依用途)

  • DNA萃取與純化
  • DNA/RNA定序
  • 基因分型
  • 基因表現分析
  • 標記發現
  • 功能基因體學

7. 全球植物性因體學市場(依性狀)

  • 除草劑抗性
  • 抗病性
  • 抗蟲性
  • 非生物脅迫耐受性
  • 產量提高
  • 品質特徵

8. 全球植物性因體學市場(按應用)

  • 糧食
  • 油籽和豆類
  • 水果和蔬菜
  • 花卉和觀賞植物
  • 其他用途

9. 全球植物性因體學市場(按最終用戶)

  • 研究辦公室和學術機構
  • 生物技術和製藥公司
  • 政府和監管機構
  • 農業企業
  • 其他最終用戶

10. 全球植物性因體學市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第 12 章:公司概況

  • Illumina, Inc.
  • Agilent Technologies, Inc.
  • Eurofins Scientific SE
  • Thermo Fisher Scientific, Inc.
  • Qiagen NV
  • BGI Genomics Co., Ltd.
  • KeyGene NV
  • Neogen Corporation
  • Novogene Co., Ltd.
  • LC Sciences, LLC
  • NRGene Ltd.
  • Oxford Nanopore Technologies plc
  • Pacific Biosciences of California, Inc.
  • TraitGenetics GmbH
  • Floragenex, Inc.
  • DNA LandMarks Inc
  • Illumina Cambridge Ltd.
  • Genewiz, Inc
  • AgBiome, Inc.
  • Genotypic Technology Pvt. Ltd.
Product Code: SMRC30780

According to Stratistics MRC, the Global Plant Genomics Market is accounted for $11.5 billion in 2025 and is expected to reach $19.7 billion by 2032 growing at a CAGR of 8.01% during the forecast period. Plant genomics is the comprehensive study of the structure, function, evolution, mapping, and editing of plant genomes to understand genetic makeup and improve agricultural productivity. It involves sequencing, analyzing, and comparing plant DNA to identify genes responsible for traits such as yield, disease resistance, stress tolerance, and nutritional value. By integrating molecular biology, bioinformatics, and biotechnology, plant genomics enables the development of genetically improved crops through marker-assisted breeding, transgenic approaches, and genome editing tools like CRISPR. This field supports sustainable agriculture, enhances food security, and addresses global challenges such as climate change, resource scarcity, and increasing population demands.

According to surveys, severe protein-calorie malnutrition affected about 2-10% of children from one to nine years in developing countries.

Market Dynamics:

Driver:

Skyrocketing Food Demand & Population Growth

Surging global food demand and rapid population growth are catalyzing innovation in the plant genomics market. These pressures are driving investments in high-yield, climate-resilient crops and accelerating adoption of genomic tools for precision breeding. Governments and agritech firms are prioritizing sustainable agriculture, boosting R&D in gene editing and trait mapping. As food systems strain under demographic shifts, plant genomics emerges as a transformative solution-enhancing productivity, nutritional value, and ecological resilience across diverse geographies, thus it driving market expansion.

Restraint:

High Costs & Financial Barriers

High costs and financial barriers significantly hinder the growth of the plant genomics market by limiting access to advanced sequencing technologies and bioinformatics tools. Small and mid-sized enterprises, especially in emerging economies, struggle to invest in R&D, slowing innovation and commercialization. These constraints also deter academic collaborations and public-private partnerships, stalling progress in crop improvement, sustainability, and food security-ultimately widening the gap between potential and practical application.

Opportunity:

Sustainable & Precision Agriculture Surge

The surge in sustainable and precision agriculture is catalyzing explosive growth in the plant genomics market. By enabling targeted breeding of climate-resilient, nutrient-rich, and pest-resistant crops, genomics aligns perfectly with eco-conscious farming goals. Precision tools like CRISPR and genomic selection accelerate trait discovery, reduce input dependency, and enhance yield predictability. This synergy is unlocking new investment avenues, especially in APAC and Africa, while driving food security and environmental sustainability-making plant genomics a cornerstone of next-gen agriculture.

Threat:

Regulatory Hurdles & Global Fragmentation

Regulatory hurdles and global fragmentation exert a negative and hindering impact on the plant genomics market. Stringent and inconsistent regulations across different regions create delays in product approvals, discourage innovation, and increase compliance costs for companies. The lack of harmonized international policies further complicates collaboration, data sharing, and cross-border research. These challenges slow the adoption of advanced genomic technologies, limiting market expansion and impeding the sector's potential to drive agricultural innovation.

Covid-19 Impact

Covid-19 had a mixed impact on the Plant Genomics Market. Initially, disruptions in supply chains, restricted research activities, and delays in agricultural projects hindered market growth. However, the pandemic underscored the importance of resilient food systems, accelerating investments in crop research and advanced genomics to ensure food security. Growing demand for sustainable agriculture, disease-resistant crops, and enhanced productivity ultimately pushed the market toward recovery and renewed focus on innovation.

The bioinformatics segment is expected to be the largest during the forecast period

The bioinformatics segment is expected to account for the largest market share during the forecast period because its integration accelerates genome sequencing, enhances crop resilience modeling, and streamlines gene-editing workflows. By decoding complex plant genomes with speed and accuracy, bioinformatics empowers researchers to develop climate-adaptive, high-yield varieties. This data-driven approach is unlocking new commercial applications across agriculture, biotechnology, and food security-positioning bioinformatics as a pivotal enabler of innovation and sustainable impact in plant genomics.

The insect resistance segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the insect resistance segment is predicted to witness the highest growth rate, due to innovation in genetic engineering and CRISPR-based crop protection. By reducing pesticide dependency and enhancing yield stability, insect-resistant traits are accelerating adoption of transgenic and genome-edited crops. This segment fuels demand for advanced omics platforms and precision breeding tools, especially in regions facing climate-driven pest pressures. Its impact is transformative-boosting sustainability, farmer profitability, and global food security through resilient, high-performance crop varieties.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rising demand for food security and climate-adaptive farming, genomics enables precision breeding and disease resistance across diverse crops. Regional governments and research institutions are accelerating innovation through strategic investments and collaborations. This momentum is fostering eco-friendly practices, reducing chemical dependency, and empowering farmers with data-driven solutions-positioning Asia Pacific as a dynamic hub for agricultural biotechnology advancement.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advancements in biotechnology, supportive government initiatives, and a well-established agricultural sector. Increasing adoption of genomic tools by farmers and researchers enhances crop yield, quality, and resistance to diseases and environmental stresses. Collaboration between research institutions and agri-tech companies further accelerates innovation, positioning the region as a leader in precision agriculture. These factors collectively strengthen food security and sustainable farming practices in North America.

Key players in the market

Some of the key players profiled in the Plant Genomics Market include Illumina, Inc., Agilent Technologies, Inc., Eurofins Scientific SE, Thermo Fisher Scientific, Inc., Qiagen N.V., BGI Genomics Co., Ltd., KeyGene N.V., Neogen Corporation, Novogene Co., Ltd., LC Sciences, LLC, NRGene Ltd., Oxford Nanopore Technologies plc, Pacific Biosciences of California, Inc., TraitGenetics GmbH, Floragenex, Inc., DNA LandMarks Inc, Illumina Cambridge Ltd., Genewiz, Inc, AgBiome, Inc. and Genotypic Technology Pvt. Ltd.

Key Developments:

In July 2025, Thermo Fisher expanded its strategic bond with Sanofi by acquiring the Ridgefield, New Jersey sterile fill-finish and packaging facility. This strengthens U.S. drug-manufacturing capacity, retains over 200 skilled employees, and deepens collaboration to meet rising pharma and biotech demand.

In June 2025, Cellular Origins has joined hands with Thermo Fisher to fuse proven cell-culture processing tools with the Constellation CGT robotic platform, forging around-the-clock industrial-scale production that boosts output per square metre, slashes labour sixteen-fold, and cuts CGT costs by over 51 %.

Types Covered:

  • Molecular Engineering
  • Genetic Engineering
  • Genome Editing
  • DNA Sequencing
  • Marker-Assisted Selection
  • Bioinformatics

Objectives Covered:

  • DNA Extraction & Purification
  • DNA/RNA Sequencing
  • Genotyping
  • Gene Expression Analysis
  • Marker Discovery
  • Functional Genomics

Traits Covered:

  • Herbicide Tolerance
  • Disease Resistance
  • Insect Resistance
  • Abiotic Stress Tolerance
  • Yield Improvement
  • Quality Traits

Applications Covered:

  • Cereals & Grains
  • Oilseeds & Pulses
  • Fruits & Vegetables
  • Flowers & Ornamentals
  • Other Applications

End Users Covered:

  • Research Laboratories & Academic Institutes
  • Biotechnology & Pharmaceutical Companies
  • Government & Regulatory Bodies
  • Agriculture Companies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Plant Genomics Market, By Type

  • 5.1 Introduction
  • 5.2 Molecular Engineering
  • 5.3 Genetic Engineering
  • 5.4 Genome Editing
  • 5.5 DNA Sequencing
  • 5.6 Marker-Assisted Selection
  • 5.7 Bioinformatics

6 Global Plant Genomics Market, By Objective

  • 6.1 Introduction
  • 6.2 DNA Extraction & Purification
  • 6.3 DNA/RNA Sequencing
  • 6.4 Genotyping
  • 6.5 Gene Expression Analysis
  • 6.6 Marker Discovery
  • 6.7 Functional Genomics

7 Global Plant Genomics Market, By Trait

  • 7.1 Introduction
  • 7.2 Herbicide Tolerance
  • 7.3 Disease Resistance
  • 7.4 Insect Resistance
  • 7.5 Abiotic Stress Tolerance
  • 7.6 Yield Improvement
  • 7.7 Quality Traits

8 Global Plant Genomics Market, By Application

  • 8.1 Introduction
  • 8.2 Cereals & Grains
  • 8.3 Oilseeds & Pulses
  • 8.4 Fruits & Vegetables
  • 8.5 Flowers & Ornamentals
  • 8.6 Other Applications

9 Global Plant Genomics Market, By End User

  • 9.1 Introduction
  • 9.2 Research Laboratories & Academic Institutes
  • 9.3 Biotechnology & Pharmaceutical Companies
  • 9.4 Government & Regulatory Bodies
  • 9.5 Agriculture Companies
  • 9.6 Other End Users

10 Global Plant Genomics Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Illumina, Inc.
  • 12.2 Agilent Technologies, Inc.
  • 12.3 Eurofins Scientific SE
  • 12.4 Thermo Fisher Scientific, Inc.
  • 12.5 Qiagen N.V.
  • 12.6 BGI Genomics Co., Ltd.
  • 12.7 KeyGene N.V.
  • 12.8 Neogen Corporation
  • 12.9 Novogene Co., Ltd.
  • 12.10 LC Sciences, LLC
  • 12.11 NRGene Ltd.
  • 12.12 Oxford Nanopore Technologies plc
  • 12.13 Pacific Biosciences of California, Inc.
  • 12.14 TraitGenetics GmbH
  • 12.15 Floragenex, Inc.
  • 12.16 DNA LandMarks Inc
  • 12.17 Illumina Cambridge Ltd.
  • 12.18 Genewiz, Inc
  • 12.19 AgBiome, Inc.
  • 12.20 Genotypic Technology Pvt. Ltd.

List of Tables

  • Table 1 Global Plant Genomics Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Plant Genomics Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Plant Genomics Market Outlook, By Molecular Engineering (2024-2032) ($MN)
  • Table 4 Global Plant Genomics Market Outlook, By Genetic Engineering (2024-2032) ($MN)
  • Table 5 Global Plant Genomics Market Outlook, By Genome Editing (2024-2032) ($MN)
  • Table 6 Global Plant Genomics Market Outlook, By DNA Sequencing (2024-2032) ($MN)
  • Table 7 Global Plant Genomics Market Outlook, By Marker-Assisted Selection (2024-2032) ($MN)
  • Table 8 Global Plant Genomics Market Outlook, By Bioinformatics (2024-2032) ($MN)
  • Table 9 Global Plant Genomics Market Outlook, By Objective (2024-2032) ($MN)
  • Table 10 Global Plant Genomics Market Outlook, By DNA Extraction & Purification (2024-2032) ($MN)
  • Table 11 Global Plant Genomics Market Outlook, By DNA/RNA Sequencing (2024-2032) ($MN)
  • Table 12 Global Plant Genomics Market Outlook, By Genotyping (2024-2032) ($MN)
  • Table 13 Global Plant Genomics Market Outlook, By Gene Expression Analysis (2024-2032) ($MN)
  • Table 14 Global Plant Genomics Market Outlook, By Marker Discovery (2024-2032) ($MN)
  • Table 15 Global Plant Genomics Market Outlook, By Functional Genomics (2024-2032) ($MN)
  • Table 16 Global Plant Genomics Market Outlook, By Trait (2024-2032) ($MN)
  • Table 17 Global Plant Genomics Market Outlook, By Herbicide Tolerance (2024-2032) ($MN)
  • Table 18 Global Plant Genomics Market Outlook, By Disease Resistance (2024-2032) ($MN)
  • Table 19 Global Plant Genomics Market Outlook, By Insect Resistance (2024-2032) ($MN)
  • Table 20 Global Plant Genomics Market Outlook, By Abiotic Stress Tolerance (2024-2032) ($MN)
  • Table 21 Global Plant Genomics Market Outlook, By Yield Improvement (2024-2032) ($MN)
  • Table 22 Global Plant Genomics Market Outlook, By Quality Traits (2024-2032) ($MN)
  • Table 23 Global Plant Genomics Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global Plant Genomics Market Outlook, By Cereals & Grains (2024-2032) ($MN)
  • Table 25 Global Plant Genomics Market Outlook, By Oilseeds & Pulses (2024-2032) ($MN)
  • Table 26 Global Plant Genomics Market Outlook, By Fruits & Vegetables (2024-2032) ($MN)
  • Table 27 Global Plant Genomics Market Outlook, By Flowers & Ornamentals (2024-2032) ($MN)
  • Table 28 Global Plant Genomics Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 29 Global Plant Genomics Market Outlook, By End User (2024-2032) ($MN)
  • Table 30 Global Plant Genomics Market Outlook, By Research Laboratories & Academic Institutes (2024-2032) ($MN)
  • Table 31 Global Plant Genomics Market Outlook, By Biotechnology & Pharmaceutical Companies (2024-2032) ($MN)
  • Table 32 Global Plant Genomics Market Outlook, By Government & Regulatory Bodies (2024-2032) ($MN)
  • Table 33 Global Plant Genomics Market Outlook, By Agriculture Companies (2024-2032) ($MN)
  • Table 34 Global Plant Genomics Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.