封面
市場調查報告書
商品編碼
1776689

預測性維護市場預測至 2032 年:按組件、部署模型、公司規模、技術、最終用戶和地區進行的全球分析

Predictive Maintenance Market Forecasts to 2032 - Global Analysis By Component (Solution, Service and Hardware), Deployment Model (Cloud and On-premise), Enterprise Size, Technique, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的預測性維護市場規模預計在 2025 年達到 136 億美元,到 2032 年將達到 630.9 億美元,預測期內的複合年成長率為 24.5%。

預測性維護是一種預防性維護方法,它利用感測器技術、機器學習和數據分析來即時追蹤設備狀況並預測何時需要維護。與被動維護或定期維護不同,預測性維護試圖在故障發生之前檢測到潛在故障,以最大限度地減少停機時間並降低維護成本。在製造、運輸和能源等領域,追蹤溫度、振動、噪音和其他運作參數的趨勢有助於延長設備壽命、提高安全性並最大限度地利用資源。

根據美國能源局的數據,實施預測性維護計畫可以減少 25-30% 的維護成本、減少 70-75% 的設備故障、減少 35-45% 的停機時間,投資回報率比糾正性維護高出 10 倍。

維護成本上升,減少停機時間的需求

計劃外停機會導致交付延誤、重大財務損失以及品牌聲譽受損。企業面臨越來越大的壓力,需要確保營運連續性和設備高可用性。透過在故障發生前安排維修,預測性維護有助於顯著減少緊急維護和生產停工。此外,透過從被動或基於時間的策略轉變為預測性策略,企業可以延長機器的使用壽命,並將整體維護成本降低高達 30%。由於預測性維護對盈利的直接影響,它已成為所有行業的首要任務。

實施成本及初始投資成本高

雖然預測性維護可以節省長期成本,但部署必要基礎設施所需的初始投資可能很高。為了進行監控和分析,公司需要投資智慧感測器、數據收集系統、連接選項、AI/ML 軟體平台以及高素質員工。對於預算緊張的組織,尤其是中小型企業 (SME) 而言,這筆前期投資可能頗具挑戰性。此外,根據業務規模和複雜程度,投資收益(ROI) 可能需要數月甚至數年才能顯現,這進一步阻礙了其採用。

雲端基礎的預測性維護解決方案的成長

預測性維護提供者看到了雲端處理轉型帶來的巨大機會。雲端基礎平台對中小型企業 (SME) 和多站點組織尤其具有吸引力,因為它們提供擴充性、遠端存取和降低的基礎設施成本。無需昂貴的本地系統,企業就可以使用雲端部署來跨境收集和分析大量機器資料。雲端解決方案還可以促進與其他企業應用程式(例如 ERP、MES 和 CMMS)的整合,實現即時更新,並使供應商能夠提供預測性維護即收益(PMaaS),從而開闢新的收入來源。

對數據品質和準確性高度信任

預測性維護的核心在於數據主導的洞察,而低品質的數據可能導致遺漏故障、誤報或不當的維護程序。感測器讀數不準確、資料雜訊、歷史記錄缺失、連接問題會嚴重影響預測演算法的可靠性。此外,如果系統錯誤地預測故障或標記不存在的問題,公司可能會對解決方案失去信心,並轉向更傳統的方法。過度依賴「資料準確性」會帶來嚴重風險,尤其是在設備故障可能造成安全或法律影響的領域。

COVID-19的影響:

由於停工停產、供應鏈中斷以及資本支出減少,新冠疫情最初擾亂了工業營運,對預測性維護市場造成了重大衝擊。然而,由於企業希望減少員工在現場的工作時間,並透過遠端監控保持營運連續性,疫情最終刺激了預測性維護解決方案的採用。此外,許多行業,尤其是製造業、能源業和交通運輸業,由於在不確定時期對持續生產、成本最佳化和設備可靠性的需求,已將數位轉型放在首位,並投資於支援工業物聯網 (IIoT)的雲端基礎預測性維護平台。

預計振動監測領域將成為預測期內最大的領域

預計振動監測領域將在預測期內佔據最大的市場佔有率。這種優勢歸功於其已被證實能夠識別設備故障的早期指標,例如旋轉機械中的鬆動、不平衡、錯位和軸承磨損。此外,振動監測廣泛應用於製造業、石油天然氣、發電和航太等各行業。振動監測能夠進行即時狀態評估,在代價高昂的故障發生前及時介入。無線感測器、雲端連接和機器學習分析的發展使其成為希望減少停機時間、延長資產壽命和提高業務效率的公司的首選。

預計預測期內汽車和運輸業將以最高的複合年成長率成長。

預計汽車和運輸業將在預測期內實現最高成長率。汽車技術的快速發展以及現代車輛產生的感測器數據的增加是這一成長的主要原因。該行業正在使用具有人工智慧分析功能的預測維修系統,以便在電子設備、煞車系統和引擎健康等關鍵部件出現問題之前對其進行監控。此外,蓬勃二手車市場、與IBM和福特等科技公司的OEM合作,以及後疫情時代對個人出行的需求,正在推動對連網汽車維護平台的投資。

佔比最大的地區:

預計北美將在預測期內佔據最大的市場佔有率,這得益於頂尖技術提供商的強大影響力、IIoT 技術的廣泛應用以及先進的工業基礎設施。該地區受益於製造業、汽車、能源和航太等行業早期採用雲端運算、人工智慧和機器學習。美國在數位轉型方面投入了大量資金,並專注於減少停機時間和最大限度地提高資產性能,在這方面處於世界領先地位。此外,政府鼓勵智慧製造的計劃以及 IBM、GE 和微軟等知名公司的存在進一步支持了北美在該市場的主導地位。

複合年成長率最高的地區:

預計亞太地區在預測期內將實現最高的複合年成長率。中國、印度、日本和韓國等國家工業化程度的提高、智慧製造技術的廣泛應用以及對工業物聯網基礎設施投資的不斷增加,都推動了這一快速擴張。政府支持工業4.0的舉措,以及製造業、能源業和汽車業對經濟實惠的維護解決方案日益成長的需求,正在加速市場的發展。此外,該地區的中小型企業對預測性維護的採用率正在急劇上升,因為它們都在努力提高業務效率並減少非計劃性停機時間。

免費客製化服務:

此報告的訂閱者可以使用以下免費自訂選項之一:

  • 公司簡介
    • 對最多三家其他市場公司進行全面分析
    • 主要企業的SWOT分析(最多3家公司)
  • 地理細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 研究範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 抑制因素
  • 機會
  • 威脅
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球預測性維護市場(按組件)

  • 解決方案
    • 融合的
    • 獨立
  • 服務
    • 整合與部署
    • 支援和維護
    • 培訓和諮詢
  • 硬體

6. 全球預測性維護市場(依部署模式)

  • 本地

7. 全球預測性維修市場(依公司規模)

  • 小型企業
  • 主要企業

8. 全球預測性維護市場(按技術)

  • 振動監測
  • 電氣測試
  • 油品分析
  • 超音波洩漏檢測儀
  • 衝擊脈衝
  • 紅外線的
  • 馬達電路分析
  • 其他技術

9. 全球預測性維護市場(依最終用戶)

  • 航太和國防
  • 汽車和運輸
  • 能源與公共產業
  • 衛生保健
  • 資訊科技/通訊
  • 製造業
  • 石油和天然氣
  • 其他最終用戶

第 10 章全球預測性維護市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章:企業概況

  • Hitachi, Ltd.
  • IBM Corporation
  • Amazon Web Services, Inc
  • Oracle Corporation
  • Microsoft Corporation
  • Robert Bosch GmbH
  • ABB Ltd
  • Schneider Electric SE
  • Cisco Systems, Inc.
  • Honeywell International Inc.
  • SAP SE
  • Accenture plc
  • Rockwell Automation
  • General Electric Company
  • Siemens
  • Google LLC
Product Code: SMRC30020

According to Stratistics MRC, the Global Predictive Maintenance Market is accounted for $13.60 billion in 2025 and is expected to reach $63.09 billion by 2032 growing at a CAGR of 24.5% during the forecast period. Predictive maintenance is a proactive approach to maintenance that makes use of sensor technologies, machine learning, and data analytics to track the state of equipment in real time and forecast when maintenance is due. Predictive maintenance, as opposed to reactive or scheduled maintenance, seeks to detect possible failures before they happen in order to minimize downtime and lower maintenance expenses. In sectors like manufacturing, transportation, and energy, this method helps increase equipment lifespan, improve safety, and maximize resource utilization by examining trends in temperature, vibration, noise, and other operational parameters.

According to the U.S. Department of Energy, implementing a predictive maintenance program can deliver 25-30 % reduction in maintenance costs, 70-75 % decrease in equipment breakdowns, and 35-45 % less downtime, with an ROI increase of up to tenfold compared to reactive maintenance.

Market Dynamics:

Driver:

Growing call to cut maintenance expenses and downtime

Unplanned downtime can lead to missed deadlines, significant financial losses, and harm to a brand's reputation. Businesses face mounting pressure to ensure operational continuity and high equipment availability. By scheduling repairs prior to failures, predictive maintenance helps businesses significantly reduce emergency maintenance and production halts. Moreover, organizations can extend the lifespan of machinery and reduce overall maintenance costs by up to 30% by switching from reactive or time-based strategies to predictive ones. Predictive maintenance is a top priority across industries because of its direct effect on profitability.

Restraint:

High implementation and initial investment costs

The initial investment needed to set up the required infrastructure can be high, even though predictive maintenance offers long-term cost savings. For monitoring and analysis, businesses need to invest in smart sensors, data collection systems, connectivity options, AI/ML software platforms, and qualified staff. Particularly for small and medium-sized businesses (SMEs), these upfront expenses may be a turnoff for organizations with tight budgets. Furthermore, depending on the size and complexity of operations, the return on investment (ROI) could take months or years to manifest, which would further discourage adoption.

Opportunity:

Growth of predictive maintenance cloud-based solutions

Predictive maintenance providers have a huge opportunity as a result of the move to cloud computing. Small and medium-sized businesses (SMEs) and multi-site organizations find cloud-based platforms particularly appealing because they provide scalability, remote accessibility, and lower infrastructure costs. Without the need for costly on-premise systems, businesses can use cloud deployment to gather and analyze massive volumes of machine data across borders. Cloud solutions also make it simpler to integrate with other enterprise apps (like ERP, MES, and CMMS), enable real-time updates, and enable vendors to offer predictive maintenance as a service (PMaaS), which opens up new revenue streams.

Threat:

High reliance on data quality and accuracy

The entire basis of predictive maintenance is data-driven insights, and low-quality data can result in missed failures, false alarms, or improper maintenance procedures. Predictive algorithms' dependability can be significantly impacted by inaccurate sensor readings, data noise, missing historical records, or connectivity problems. Moreover, companies might lose faith in the solution and possibly turn back to more conventional approaches if the system mispredicts a breakdown or flags problems that don't exist. An excessive dependence on "data correctness" poses a serious risk, particularly in sectors where equipment failure could have safety or legal repercussions.

Covid-19 Impact:

Due to lockdowns, supply chain disruptions, and lower capital expenditures, the COVID-19 pandemic first disrupted industrial operations, this had a major effect on the predictive maintenance market. But in the end, it sped up the adoption of predictive maintenance solutions as businesses looked to reduce the amount of time employees spent on-site and preserve operational continuity through remote monitoring. Additionally, numerous industries, particularly manufacturing, energy, and transportation, prioritized digital transformation and made investments in IIoT-enabled, cloud-based predictive maintenance platforms due to the need for continuous production, cost optimization, and equipment reliability in uncertain times.

The vibration monitoring segment is expected to be the largest during the forecast period

The vibration monitoring segment is expected to account for the largest market share during the forecast period. This dominance results from its demonstrated ability to identify early indicators of equipment failure, including looseness, imbalance, misalignment, and bearing wear in rotating machinery. Furthermore, vibration monitoring is widely used in a variety of industries, including manufacturing, oil and gas, power generation, and aerospace. It enables real-time condition assessment, allowing for prompt interventions prior to expensive breakdowns. It is now the go-to option for businesses looking to reduce downtime, increase asset life, and boost operational efficiency owing to developments in wireless sensors, cloud connectivity, and machine learning analytics.

The automotive & transportation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive & transportation segment is predicted to witness the highest growth rate. The quick development of vehicle technologies and the growing amount of sensor-generated data from contemporary cars are the main causes of this spike. This industry uses predictive maintenance systems that use AI-powered analytics to keep an eye on vital parts like electronics, brake systems, and engine health before problems arise. Moreover, a thriving used car market, OEM partnerships with tech firms like IBM and Ford, and the post-pandemic need for personal mobility are all driving investments in connected vehicle maintenance platforms.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by its robust presence of top technology providers, extensive use of IIoT technologies, and sophisticated industrial infrastructure. Early adoption of cloud computing, AI, and machine learning in industries like manufacturing, automotive, energy, and aerospace benefits the region. Due to significant investments in digital transformation and a focus on reducing downtime and maximizing asset performance, the United States leads the world in this regard. Furthermore, North America's dominance in this market is further supported by government programs that encourage smart manufacturing as well as the existence of well-known companies like IBM, GE, and Microsoft.

Region with highest CAGR:

Over the forecast period, the Asia-Pacific region is anticipated to exhibit the highest CAGR. Growing industrialization, the broad use of smart manufacturing techniques, and increased investments in IIoT infrastructure in nations like China, India, Japan, and South Korea are all contributing factors to this quick expansion. The market is expanding at an accelerated rate due to government initiatives supporting Industry 4.0 and a rise in demand for affordable maintenance solutions in the manufacturing, energy, and automotive sectors. Moreover, predictive maintenance adoption is rising dramatically among SMEs and large enterprises in the region as companies work to increase operational efficiency and decrease unscheduled downtime.

Key players in the market

Some of the key players in Predictive Maintenance Market include Hitachi, Ltd., IBM Corporation, Amazon Web Services, Inc, Oracle Corporation, Microsoft Corporation, Robert Bosch GmbH, ABB Ltd, Schneider Electric SE, Cisco Systems, Inc., Honeywell International Inc., SAP SE, Accenture plc, Rockwell Automation, General Electric Company, Siemens and Google LLC.

Key Developments:

In May 2025, Hitachi Digital Services announced a five-year agreement with Envista Holdings Corporation to deliver end-to-end IT managed services across Envista's operations in more than 60 countries. Envista selected Hitachi Digital Services as its strategic IT partner to support its digital transformation and operational efficiency goals. Under this agreement, Hitachi Digital Services will provide 24/7 global IT services-including application support, network infrastructure, analytics and business intelligence, and cybersecurity-through its global delivery centers in India, Mexico, Portugal, the U.S. and Vietnam.

In March 2025, ABB has signed a Leveraged Procurement Agreement (LPA) to support as the automation partner for Dow's Path2Zero project at Fort Saskatchewan in Alberta, Canada. According to Dow, the project, which is currently under construction, will create the world's first net-zero Scope 1 and 2 greenhouse gas emissions ethylene and derivatives complex1, producing the essential building blocks needed for many of the materials and products that society relies on.

In July 2024, Bosch is continuing its growth course with a strategic acquisition. For its Energy and Building Technology business sector, the Bosch Group plans to take over the global HVAC solutions business for residential and light commercial buildings from Johnson Controls. As part of this transaction, Bosch also intends to acquire 100 percent of the Johnson Controls-Hitachi Air Conditioning (JCH) joint venture, including Hitachi's 40 percent stake.

Components Covered:

  • Solution
  • Service
  • Hardware

Deployment Models Covered:

  • Cloud
  • On-premise

Enterprise Sizes Covered:

  • Small & Medium Enterprises
  • Large Enterprises

Techniques Covered:

  • Vibration Monitoring
  • Electrical Testing
  • Oil Analysis
  • Ultrasonic Leak Detectors
  • Shock Pulse
  • Infrared
  • Motor Circuit Analysis
  • Other Techniques

End Users Covered:

  • Aerospace & Defense
  • Automotive & Transportation
  • Energy & Utilities
  • Healthcare
  • IT & Telecommunications
  • Manufacturing
  • Oil & Gas
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Predictive Maintenance Market, By Component

  • 5.1 Introduction
  • 5.2 Solution
    • 5.2.1 Integrated
    • 5.2.2 Standalone
  • 5.3 Service
    • 5.3.1 Integration and Deployment
    • 5.3.2 Support & Maintenance
    • 5.3.3 Training & Consulting
  • 5.4 Hardware

6 Global Predictive Maintenance Market, By Deployment Model

  • 6.1 Introduction
  • 6.2 Cloud
  • 6.3 On-premise

7 Global Predictive Maintenance Market, By Enterprise Size

  • 7.1 Introduction
  • 7.2 Small & Medium Enterprises
  • 7.3 Large Enterprises

8 Global Predictive Maintenance Market, By Technique

  • 8.1 Introduction
  • 8.2 Vibration Monitoring
  • 8.3 Electrical Testing
  • 8.4 Oil Analysis
  • 8.5 Ultrasonic Leak Detectors
  • 8.6 Shock Pulse
  • 8.7 Infrared
  • 8.8 Motor Circuit Analysis
  • 8.9 Other Techniques

9 Global Predictive Maintenance Market, By End User

  • 9.1 Introduction
  • 9.2 Aerospace & Defense
  • 9.3 Automotive & Transportation
  • 9.4 Energy & Utilities
  • 9.5 Healthcare
  • 9.6 IT & Telecommunications
  • 9.7 Manufacturing
  • 9.8 Oil & Gas
  • 9.9 Other End Users

10 Global Predictive Maintenance Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Hitachi, Ltd.
  • 12.2 IBM Corporation
  • 12.3 Amazon Web Services, Inc
  • 12.4 Oracle Corporation
  • 12.5 Microsoft Corporation
  • 12.6 Robert Bosch GmbH
  • 12.7 ABB Ltd
  • 12.8 Schneider Electric SE
  • 12.9 Cisco Systems, Inc.
  • 12.10 Honeywell International Inc.
  • 12.11 SAP SE
  • 12.12 Accenture plc
  • 12.13 Rockwell Automation
  • 12.14 General Electric Company
  • 12.15 Siemens
  • 12.16 Google LLC

List of Tables

  • Table 1 Global Predictive Maintenance Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Predictive Maintenance Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Predictive Maintenance Market Outlook, By Solution (2024-2032) ($MN)
  • Table 4 Global Predictive Maintenance Market Outlook, By Integrated (2024-2032) ($MN)
  • Table 5 Global Predictive Maintenance Market Outlook, By Standalone (2024-2032) ($MN)
  • Table 6 Global Predictive Maintenance Market Outlook, By Service (2024-2032) ($MN)
  • Table 7 Global Predictive Maintenance Market Outlook, By Integration and Deployment (2024-2032) ($MN)
  • Table 8 Global Predictive Maintenance Market Outlook, By Support & Maintenance (2024-2032) ($MN)
  • Table 9 Global Predictive Maintenance Market Outlook, By Training & Consulting (2024-2032) ($MN)
  • Table 10 Global Predictive Maintenance Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 11 Global Predictive Maintenance Market Outlook, By Deployment Model (2024-2032) ($MN)
  • Table 12 Global Predictive Maintenance Market Outlook, By Cloud (2024-2032) ($MN)
  • Table 13 Global Predictive Maintenance Market Outlook, By On-premise (2024-2032) ($MN)
  • Table 14 Global Predictive Maintenance Market Outlook, By Enterprise Size (2024-2032) ($MN)
  • Table 15 Global Predictive Maintenance Market Outlook, By Small & Medium Enterprises (2024-2032) ($MN)
  • Table 16 Global Predictive Maintenance Market Outlook, By Large Enterprises (2024-2032) ($MN)
  • Table 17 Global Predictive Maintenance Market Outlook, By Technique (2024-2032) ($MN)
  • Table 18 Global Predictive Maintenance Market Outlook, By Vibration Monitoring (2024-2032) ($MN)
  • Table 19 Global Predictive Maintenance Market Outlook, By Electrical Testing (2024-2032) ($MN)
  • Table 20 Global Predictive Maintenance Market Outlook, By Oil Analysis (2024-2032) ($MN)
  • Table 21 Global Predictive Maintenance Market Outlook, By Ultrasonic Leak Detectors (2024-2032) ($MN)
  • Table 22 Global Predictive Maintenance Market Outlook, By Shock Pulse (2024-2032) ($MN)
  • Table 23 Global Predictive Maintenance Market Outlook, By Infrared (2024-2032) ($MN)
  • Table 24 Global Predictive Maintenance Market Outlook, By Motor Circuit Analysis (2024-2032) ($MN)
  • Table 25 Global Predictive Maintenance Market Outlook, By Other Techniques (2024-2032) ($MN)
  • Table 26 Global Predictive Maintenance Market Outlook, By End User (2024-2032) ($MN)
  • Table 27 Global Predictive Maintenance Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 28 Global Predictive Maintenance Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 29 Global Predictive Maintenance Market Outlook, By Energy & Utilities (2024-2032) ($MN)
  • Table 30 Global Predictive Maintenance Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 31 Global Predictive Maintenance Market Outlook, By IT & Telecommunications (2024-2032) ($MN)
  • Table 32 Global Predictive Maintenance Market Outlook, By Manufacturing (2024-2032) ($MN)
  • Table 33 Global Predictive Maintenance Market Outlook, By Oil & Gas (2024-2032) ($MN)
  • Table 34 Global Predictive Maintenance Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.