封面
市場調查報告書
商品編碼
1755971

2032 年電網形成逆變器市場預測:按類型、組件、額定功率、性別、技術、最終用戶和地區進行的全球分析

Grid Forming Inverter Market Forecasts to 2032 - Global Analysis By Type (Voltage Source Inverter (VSI), Current Source Inverter (CSI) and Hybrid Inverter), Component, Power Rating, Connectivity, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球併網逆變器市場預計在 2025 年將達到 8.5 億美元,到 2032 年將達到 16.7 億美元,預測期內的複合年成長率為 10.2%。

微電網和可再生能源系統的運作得益於一種名為「電網形成逆變器」(GFI)的電力逆變器。與依賴現有電網訊號的「電網追蹤逆變器」不同,電網形成逆變器可以獨立運行,既可以採用孤島模式,也可以與其他電源組合運行。它們透過模擬傳統同步發電機的運作來提供穩定性和慣性。因此,它們對於在維持電網穩定性的同時吸收大量可再生能源至關重要,尤其是在偏遠地區和停電期間。

根據國際能源總署(IEA)的數據,到2024年全球可再生能源裝置容量可能達到550吉瓦。

提高可再生能源整合度

隨著太陽能和風力發電不斷擴大,慣性和系統穩定性成為主要問題。電網形成逆變器解決了這些問題,即使在沒有傳統同步發電機的情況下也能實現穩定的電壓和頻率。它們使可再生能夠像傳統能源一樣運行,從而提高了電網的彈性。為了實現脫碳目標,政府和公用事業公司正在加大在這些逆變器上的投資。這一趨勢正在推動全球對尖端電網形成技術的需求。

前期成本高且實施複雜

高昂的基礎設施和設備成本使許多潛在客戶對採用這項技術猶豫不決。複雜的實施程序需要專業人員和深度系統整合,這可能會延遲計劃交付時間。這些技術難題增加了總成本和業務風險。缺乏標準化的安裝技術進一步加劇了實施的複雜性。因此,儘管併網逆變器具有長期優勢,但許多組織仍猶豫是否要全面採用它們。

智慧電網和微電網的擴展

併網逆變器的主要功能之一是提供這些先進電力系統所需的電壓和頻率參考。面對日益增加的分散式再生能源來源網逆變器有助於實現電網的穩定穩健運作。這些逆變器對於微電網在獨立運作或併網模式下的運作至關重要,尤其是在偏遠地區或災害多發地區。此外,將分散式能源和動態負載整合到智慧電網中需要智慧且自適應的逆變器技術。正是這種日益成長的依賴性,持續推動全球對併網逆變器解決方案的需求。

技術標準化和互通性問題

缺乏標準化標準為消費者和生產者帶來了複雜性,並減緩了整合的進程。由於需要專門的解決方案,這種碎片化增加了開發和部署成本。此外,它還限制了電網應用的擴充性和適應性,阻礙了其廣泛應用。互通性問題引發了人們對系統使用安全性和可靠性的質疑。這些問題阻礙了併網逆變器的投資和技術進步,阻礙了市場擴張。

COVID-19的影響

新冠疫情最初擾亂了併網逆變器市場,原因是製造業停工、供應鏈瓶頸以及可再生能源計劃延期。然而,隨著世界各國政府優先考慮綠色復甦戰略和永續能源投資,對高彈性和靈活電網解決方案的需求激增。這種轉變促使人們對併網逆變器的興趣日益濃厚,因為它們能夠提高電網穩定性並整合可再生能源。疫情過後,人們對能源轉型和電網現代化的關注度不斷提高,這正在加速市場的復甦和長期成長前景。

預計預測期內電流源逆變器 (CSI) 部分將實現最大幅度成長。

電流源逆變器 (CSI) 領域預計將在預測期內佔據最大市場佔有率,這得益於其在可再生能源豐富的電力系統中增強的穩定性和容錯能力。 CSI 提供卓越的輸出電流控制,這對於需要維持電網電壓和頻率的電網整形應用至關重要。其固有的短路保護功能以及無需電壓反饋即可運行的能力使其成為輕型電網和孤島電網的理想選擇。此外,半導體技術的進步提高了基於 CSI 的解決方案的效率和擴充性。隨著公用事業公司向分散式和逆變器主導的電網轉型,對穩健的 CSI 技術的需求持續穩定成長。

國防和軍事部門預計將在預測期內實現最高複合年成長率

預計國防和軍事領域將在預測期內實現最高成長率。這是因為偏遠地區和惡劣環境下對可靠且有彈性的電力系統的需求至關重要。 GFI 能夠支援穩定的微電網,從而支援敏感國防設備和通訊網路的不間斷運作。軍事基地擴大採用可再生能源,這推動了對能夠無縫管理可變電源的先進 GFI 的需求。此外,軍事現代化計劃優先考慮能源安全和電網獨立性,這推動了 GFI 的部署。此外,國防應用對行動和自主電源解決方案的需求也加速了 GFI 技術創新和市場成長。

佔比最大的地區:

在預測期內,由於可再生能源(尤其是太陽能和風能)的日益普及,預計亞太地區將佔據最大的市場佔有率。新興經濟體快速的都市化和電氣化進程,加上政府的獎勵,正在推動逆變器的部署。該地區面臨電網不穩定和電力供應波動等獨特挑戰,這導致其越來越依賴先進的逆變器解決方案來維持電網可靠性。此外,中國和印度等國家的基礎設施現代化計劃正在創造巨大的機會,國內外製造商都在競相滿足日益成長的需求。

複合年成長率最高的地區:

在預測期內,由於太陽能和風能等再生能源來源日益融入電網,北美預計將呈現最高的複合年成長率。各國政府不斷推出的電網現代化和能源儲存解決方案將進一步推動市場成長。國防和軍事部門也推動了對可靠且彈性電力系統的需求。在分散式能源和微電網日益普及的背景下,美國和加拿大先進的電網基礎設施有助於併網逆變器的採用,從而實現穩定的電網運作。

免費客製化服務:

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 全面分析其他市場參與者(最多 3 家公司)
    • 主要企業的SWOT分析(最多3家公司)
  • 地理細分
    • 根據客戶興趣對主要國家市場進行估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 研究範圍
  • 調查方法
    • 資料探勘
    • 數據分析
    • 數據檢驗
    • 研究途徑
  • 研究材料
    • 主要研究資料
    • 次級研究資訊來源
    • 先決條件

第3章市場走勢分析

  • 驅動程式
  • 限制因素
  • 機會
  • 威脅
  • 技術分析
  • 最終用戶分析
  • 新興市場
  • COVID-19的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球併網逆變器市場(按類型)

  • 電壓源逆變器(VSI)
  • 電流源逆變器(CSI)
  • 混合逆變器

6. 全球併網逆變器市場(按組件)

  • 硬體
  • 軟體
  • 服務

7. 全球併網逆變器市場(依功率等級)

  • 小於10kW
  • 10kW~100kW
  • 超過100kW

8. 全球併網逆變器市場:依連接類型

  • 併網
  • 離網
  • 混合

9. 全球併網逆變器市場(按技術)

  • 下垂控制
  • 虛擬同步機器(VSM)
  • 同步調相機仿真
  • 機器學習控制

第 10 章全球併網逆變器市場(按最終用戶)

  • 住房
  • 商業的
  • 產業
  • 公用事業
  • 國防/軍事
  • 其他最終用戶

第 11 章全球併網逆變器市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章 公司概況

  • Huawei Technologies Co., Ltd.
  • SMA Solar Technology AG
  • General Electric(GE)
  • Sungrow Power Supply Co., Ltd.
  • FIMER Group
  • SolarEdge Technologies Inc.
  • Enphase Energy, Inc.
  • Delta Electronics, Inc.
  • Schneider Electric SE
  • Fronius International GmbH
  • GoodWe Power Supply Technology Co., Ltd.
  • KACO new energy GmbH
  • Gamesa Electric
  • TMEIC Corporation
  • Mitsubishi Electric Corporation
  • ABB Ltd.
  • Ingeteam SA
  • Ginlong Technologies Co., Ltd.
Product Code: SMRC29865

According to Stratistics MRC, the Global Grid Forming Inverter Market is accounted for $0.85 billion in 2025 and is expected to reach $1.67 billion by 2032 growing at a CAGR of 10.2% during the forecast period. The stable operation of microgrids and renewable energy systems is made possible by a type of power inverter called a Grid Forming Inverter (GFI), which creates and controls voltage and frequency in an electrical grid. Grid-forming inverters can function independently in islanded mode or in conjunction with other power sources, in contrast to grid-following inverters, which depend on an existing grid signal. They provide stability and inertia by simulating the actions of conventional synchronous generators. They are therefore crucial for incorporating significant amounts of renewable energy while preserving grid stability, particularly in remote locations or during outages.

According to the International Energy Agency, global renewable capacity additions could potentially reach 550 GW in 2024.

Market Dynamics:

Driver:

Rising renewable energy integration

Inertia and system stability become major issues when solar and wind energy grow on the grid. By permitting steady voltage and frequency even in the absence of conventional synchronous generators, grid forming inverters solve these problems. They promote grid resilience by enabling renewables to behave similarly to traditional power sources. To reach decarbonisation targets, governments and utilities are spending more money on these inverters. Global demand for cutting-edge grid-forming technology is rising as a result of this trend.

Restraint:

High initial cost and complex implementation

The high cost of the infrastructure and equipment discourages many prospective customers from adopting this technology. Project deadlines may be delayed by the need for specialised staff and deep system integration for complex implementation procedures. These technical difficulties raise total expenses and operating risks. Deployment is further complicated by the absence of standardised installation techniques. Consequently, despite the long-term advantages of grid forming inverters, many organisations are hesitant to fully adopt them.

Opportunity:

Smart grid and microgrid expansion

One of the primary functions of grid-forming inverters is to provide voltage and frequency references, which these sophisticated power systems require. Grid-forming inverters facilitate steady and robust grid operations when decentralised renewable energy sources increase in number. These inverters are essential for microgrids to function independently or in grid-connected modes, particularly in isolated or disaster-prone locations. Additionally, dispersed energy supplies and dynamic loads are integrated into smart grids, necessitating clever and adaptable inverter technology. The continued need for grid-forming inverter solutions around the world is fuelled by this growing dependence.

Threat:

Technical standardization and interoperability issues

The absence of standardised standards complicates things for consumers and producers and slows down integration attempts. Because specialised solutions are needed, this fragmentation raises development and deployment costs. Additionally, it restricts grid applications' scalability and adaptability, which prevents widespread adoption. Interoperability issues can create questions regarding the safety and dependability of the system when it is in use. All things considered, these problems impede market expansion by deterring investments and technological advancements in grid-forming inverters.

Covid-19 Impact

The COVID-19 pandemic initially disrupted the Grid Forming Inverter Market due to halted manufacturing, supply chain bottlenecks, and delayed renewable energy projects. However, as governments emphasized green recovery strategies and sustainable energy investments, demand for resilient and flexible grid solutions surged. This shift boosted interest in grid forming inverters for their ability to enhance grid stability and integrate renewables. Post-pandemic, increased focus on energy transition and grid modernization has accelerated the market's recovery and long-term growth prospects.

The current source inverter (CSI) segment is expected to be the largest during the forecast period

The current source inverter (CSI) segment is expected to account for the largest market share during the forecast period by offering enhanced stability and fault-tolerant capabilities in renewable-rich power systems. CSIs provide superior control over output current, which is crucial for grid-forming applications where maintaining grid voltage and frequency is essential. Their inherent short-circuit protection and ability to operate without requiring voltage feedback make them ideal for weak or islanded grids. Additionally, advancements in semiconductor technology have improved the efficiency and scalability of CSI-based solutions. As utilities transition toward decentralized and inverter-dominated grids, the demand for robust CSI technologies continues to grow steadily.

The defense & military segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the defense & military segment is predicted to witness the highest growth rate, due to its critical need for reliable, resilient power systems in remote and harsh environments. GFIs enable stable microgrids that support uninterrupted operations of sensitive defense equipment and communication networks. Increasing adoption of renewable energy in military bases drives demand for advanced GFIs that can seamlessly manage variable power sources. Furthermore, military modernization programs emphasize energy security and grid independence, boosting GFI deployment. The requirement for mobile and autonomous power solutions in defense applications also accelerates innovation and market growth for GFIs.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to escalating renewable energy installations, especially solar and wind. Rapid urbanization and electrification efforts in emerging economies, alongside government incentives, encourage inverter deployment. The region faces unique challenges like grid instability and fluctuating power supply, increasing reliance on advanced inverter solutions to maintain grid reliability. Moreover, infrastructure modernization projects in countries like China and India create significant opportunities, with local and global manufacturers competing to meet the rising demand.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by increasing integration of renewable energy sources like solar and wind into the power grid. Growing government initiatives for grid modernization and energy storage solutions further accelerate market growth. The defense and military sectors also contribute due to their demand for reliable and resilient power systems. Advanced grid infrastructure in the U.S. and Canada supports adoption of grid forming inverters, enabling stable grid operation amid rising distributed energy resources and microgrid deployments.

Key players in the market

Some of the key players profiled in the Grid Forming Inverter Market include Huawei Technologies Co., Ltd., SMA Solar Technology AG, General Electric (GE), Sungrow Power Supply Co., Ltd., FIMER Group, SolarEdge Technologies Inc., Enphase Energy, Inc., Delta Electronics, Inc., Schneider Electric SE, Fronius International GmbH, GoodWe Power Supply Technology Co., Ltd., KACO new energy GmbH, Gamesa Electric, TMEIC Corporation, Mitsubishi Electric Corporation, ABB Ltd. and Ingeteam S.A.

Key Developments:

In March 2025, SMA America introduced the Sunny Central Storage UP-S, a high-efficiency grid-scale battery inverter featuring silicon carbide (SiC) MOSFET technology. This inverter boasts over 99.2% efficiency and supports dynamic grid support, making it suitable for large-scale energy storage projects.

In June 2024, Huawei introduced the world's first Cell-to-Grid Smart String & Grid-Forming ESS Platform. This platform integrates PV, energy storage systems (ESS), and grid-forming capabilities, enhancing the stability and efficiency of renewable energy integration. Notably, in a project in Qinghai, China, the system increased renewable energy output by 40% when the short circuit ratio (SCR) was 1.5.

Types Covered:

  • Voltage Source Inverter (VSI)
  • Current Source Inverter (CSI)
  • Hybrid Inverter

Components Covered:

  • Hardware
  • Software
  • Services

Power Ratings Covered:

  • Up to 10 kW
  • 10 kW - 100 kW
  • Above 100 kW

Connectivities Covered:

  • On-grid
  • Off-grid
  • Hybrid

Technologies Covered:

  • Droop Control
  • Virtual Synchronous Machine (VSM)
  • Synchronous Condenser Emulation
  • Machine Learning Enabled Control

End Users Covered:

  • Residential
  • Commercial
  • Industrial
  • Utilities
  • Defense & Military
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Grid Forming Inverter Market, By Type

  • 5.1 Introduction
  • 5.2 Voltage Source Inverter (VSI)
  • 5.3 Current Source Inverter (CSI)
  • 5.4 Hybrid Inverter

6 Global Grid Forming Inverter Market, By Component

  • 6.1 Introduction
  • 6.2 Hardware
  • 6.3 Software
  • 6.4 Services

7 Global Grid Forming Inverter Market, By Power Rating

  • 7.1 Introduction
  • 7.2 Up to 10 kW
  • 7.3 10 kW - 100 kW
  • 7.4 Above 100 kW

8 Global Grid Forming Inverter Market, By Connectivity

  • 8.1 Introduction
  • 8.2 On-grid
  • 8.3 Off-grid
  • 8.4 Hybrid

9 Global Grid Forming Inverter Market, By Technology

  • 9.1 Introduction
  • 9.2 Droop Control
  • 9.3 Virtual Synchronous Machine (VSM)
  • 9.4 Synchronous Condenser Emulation
  • 9.5 Machine Learning Enabled Control

10 Global Grid Forming Inverter Market, By End User

  • 10.1 Introduction
  • 10.2 Residential
  • 10.3 Commercial
  • 10.4 Industrial
  • 10.5 Utilities
  • 10.6 Defense & Military
  • 10.7 Other End Users

11 Global Grid Forming Inverter Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Huawei Technologies Co., Ltd.
  • 13.2 SMA Solar Technology AG
  • 13.3 General Electric (GE)
  • 13.4 Sungrow Power Supply Co., Ltd.
  • 13.5 FIMER Group
  • 13.6 SolarEdge Technologies Inc.
  • 13.7 Enphase Energy, Inc.
  • 13.8 Delta Electronics, Inc.
  • 13.9 Schneider Electric SE
  • 13.10 Fronius International GmbH
  • 13.11 GoodWe Power Supply Technology Co., Ltd.
  • 13.12 KACO new energy GmbH
  • 13.13 Gamesa Electric
  • 13.14 TMEIC Corporation
  • 13.15 Mitsubishi Electric Corporation
  • 13.16 ABB Ltd.
  • 13.17 Ingeteam S.A.
  • 13.18 Ginlong Technologies Co., Ltd.

List of Tables

  • Table 1 Global Grid Forming Inverter Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Grid Forming Inverter Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Grid Forming Inverter Market Outlook, By Voltage Source Inverter (VSI) (2024-2032) ($MN)
  • Table 4 Global Grid Forming Inverter Market Outlook, By Current Source Inverter (CSI) (2024-2032) ($MN)
  • Table 5 Global Grid Forming Inverter Market Outlook, By Hybrid Inverter (2024-2032) ($MN)
  • Table 6 Global Grid Forming Inverter Market Outlook, By Component (2024-2032) ($MN)
  • Table 7 Global Grid Forming Inverter Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 8 Global Grid Forming Inverter Market Outlook, By Software (2024-2032) ($MN)
  • Table 9 Global Grid Forming Inverter Market Outlook, By Services (2024-2032) ($MN)
  • Table 10 Global Grid Forming Inverter Market Outlook, By Power Rating (2024-2032) ($MN)
  • Table 11 Global Grid Forming Inverter Market Outlook, By Up to 10 kW (2024-2032) ($MN)
  • Table 12 Global Grid Forming Inverter Market Outlook, By 10 kW - 100 kW (2024-2032) ($MN)
  • Table 13 Global Grid Forming Inverter Market Outlook, By Above 100 kW (2024-2032) ($MN)
  • Table 14 Global Grid Forming Inverter Market Outlook, By Connectivity (2024-2032) ($MN)
  • Table 15 Global Grid Forming Inverter Market Outlook, By On-grid (2024-2032) ($MN)
  • Table 16 Global Grid Forming Inverter Market Outlook, By Off-grid (2024-2032) ($MN)
  • Table 17 Global Grid Forming Inverter Market Outlook, By Hybrid (2024-2032) ($MN)
  • Table 18 Global Grid Forming Inverter Market Outlook, By Technology (2024-2032) ($MN)
  • Table 19 Global Grid Forming Inverter Market Outlook, By Droop Control (2024-2032) ($MN)
  • Table 20 Global Grid Forming Inverter Market Outlook, By Virtual Synchronous Machine (VSM) (2024-2032) ($MN)
  • Table 21 Global Grid Forming Inverter Market Outlook, By Synchronous Condenser Emulation (2024-2032) ($MN)
  • Table 22 Global Grid Forming Inverter Market Outlook, By Machine Learning Enabled Control (2024-2032) ($MN)
  • Table 23 Global Grid Forming Inverter Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Grid Forming Inverter Market Outlook, By Residential (2024-2032) ($MN)
  • Table 25 Global Grid Forming Inverter Market Outlook, By Commercial (2024-2032) ($MN)
  • Table 26 Global Grid Forming Inverter Market Outlook, By Industrial (2024-2032) ($MN)
  • Table 27 Global Grid Forming Inverter Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 28 Global Grid Forming Inverter Market Outlook, By Defense & Military (2024-2032) ($MN)
  • Table 29 Global Grid Forming Inverter Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.