人工智慧基礎設施市場規模、佔有率和成長分析(按組件、硬體類型、部署模式、最終用戶產業、組織規模和地區分類)—2026-2033年產業預測
市場調查報告書
商品編碼
1920986

人工智慧基礎設施市場規模、佔有率和成長分析(按組件、硬體類型、部署模式、最終用戶產業、組織規模和地區分類)—2026-2033年產業預測

AI Infrastructure Market Size, Share, and Growth Analysis, By Component (Hardware, Software), By Hardware Type (GPUs & Accelerators, CPUs), By Deployment Model, By End Use Industry, By Organization Size, By Region - Industry Forecast 2026-2033

出版日期: | 出版商: SkyQuest | 英文 191 Pages | 商品交期: 3-5個工作天內

價格
簡介目錄

預計到 2024 年,全球人工智慧基礎設施市場規模將達到 982 億美元,到 2025 年將成長至 1,121.4 億美元,到 2033 年將成長至 3,244.2 億美元,在預測期(2026-2033 年)內複合年成長率為 14.2%。

全球對人工智慧基礎設施的需求主要受生成式人工智慧日益普及、企業數位轉型加速以及雲端架構和混合架構興起的推動。人工智慧硬體的進步、政府主導的增加以及數據生成的指數級成長也促進了這一成長。各行業對機器學習和自動化技術的日益普及,以及對數據驅動決策的高度重視,正在推動對人工智慧基礎設施的投資。政府對人工智慧研究和智慧基礎設施的資助,也為雲端平台和超大規模資料中心提供了支援。然而,高昂的資本和營運成本、能源消耗、永續性問題、人才短缺以及對資料安全和監管合規性的擔憂等挑戰,可能會阻礙未來的市場滲透。

推動全球人工智慧基礎設施市場發展的因素

全球人工智慧基礎設施市場的主要驅動力之一是各行業對先進數據處理能力日益成長的需求。隨著企業努力利用人工智慧的力量,對能夠支援複雜演算法、大型資料集和即時分析的強大基礎設施的需求也日益成長。這種需求源於對機器學習、深度學習和數據驅動決策的日益依賴,迫使企業投資可擴展的雲端服務、高效能運算和專用硬體。因此,這一趨勢不僅提高了營運效率,也促進了創新,為擴展人工智慧基礎設施能力提供了強力的理由。

全球人工智慧基礎設施市場面臨的限制因素

全球人工智慧基礎設施市場面臨的主要限制因素之一是資料隱私和安全監管環境的快速變化。世界各國政府正日益推出旨在保護用戶資料的嚴格法規,這可能會使人工智慧技術的應用和整合變得更加複雜。企業在創新和提升自身人工智慧能力的同時,可能面臨如何確保遵守這些法規的挑戰。此外,對資料外洩以及違反監管規定可能帶來的後果的擔憂,可能會抑制對人工智慧基礎設施的投資,從而減緩市場成長並限制該領域的發展機會。

全球人工智慧基礎設施市場趨勢

全球人工智慧基礎設施市場正呈現出向混合和分散式模型發展的顯著趨勢,企業尋求提升成本效益和效能。由於對延遲的敏感度以及嚴格的資料管治要求,企業擴大將人工智慧工作負載分散部署在本地資料中心、公共雲端解決方案和邊緣環境中。這種策略調整使企業能夠在將敏感資料保留在本地邊界的同時,利用雲端資源的擴充性來處理資源彙整密集型訓練任務。隨著這一趨勢的不斷發展,企業將能夠更好地最佳化其人工智慧能力,並在快速變化的數位化環境中確保柔軟性和合規性。

目錄

介紹

  • 調查目標
  • 市場定義和範圍

調查方法

  • 調查過程
  • 二手資料和一手資料方法
  • 市場規模估算方法

執行摘要

  • 全球市場展望
  • 市場主要亮點
  • 細分市場概覽
  • 競爭格局概述

市場動態與展望

  • 總體經濟指標
  • 促進因素和機遇
  • 限制與挑戰
  • 供給面趨勢
  • 需求面趨勢
  • 波特的分析和影響

關鍵市場考察

  • 關鍵成功因素
  • 影響市場的因素
  • 關鍵投資機會
  • 生態系測繪
  • 市場吸引力指數(2025)
  • PESTEL 分析
  • 價值鏈分析
  • 定價分析
  • 案例研究
  • 監管環境
  • 技術評估
  • 技術評估
  • 監管環境

全球人工智慧基礎設施市場規模(按組件分類)及複合年成長率(2026-2033 年)

  • 硬體
  • 軟體
  • 服務

全球人工智慧基礎設施市場規模(按硬體類型和複合年成長率分類)(2026-2033 年)

  • GPU 和加速器
  • CPU
  • 儲存系統
  • 網路裝置
  • 邊緣人工智慧設備

全球人工智慧基礎設施市場規模(按部署模式和複合年成長率分類)(2026-2033 年)

  • 本地部署
  • 混合

全球人工智慧基礎設施市場規模(按最終用戶產業分類)及複合年成長率(2026-2033 年)

  • IT/通訊
  • BFSI
  • 衛生保健
  • 零售與電子商務

全球人工智慧基礎設施市場規模(按組織規模和複合年成長率分類)(2026-2033 年)

  • 主要企業
  • 小型企業

全球人工智慧基礎設施市場規模及複合年成長率(2026-2033)

  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 西班牙
    • 法國
    • 英國
    • 義大利
    • 其他歐洲地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 亞太其他地區
  • 拉丁美洲
    • 墨西哥
    • 巴西
    • 其他拉丁美洲地區
  • 中東和非洲
    • 海灣合作理事會國家
    • 南非
    • 其他中東和非洲地區

競爭資訊

  • 前五大公司對比
  • 主要企業的市場定位(2025 年)
  • 主要市場參與者所採取的策略
  • 近期市場趨勢
  • 公司市佔率分析(2025 年)
  • 主要企業公司簡介
    • 公司詳情
    • 產品系列分析
    • 依業務板塊進行公司股票分析
    • 2023-2025年營收年比比較

主要企業簡介

  • NVIDIA
  • Intel
  • AMD
  • Google
  • Microsoft
  • Amazon Web Services(AWS)
  • IBM
  • Oracle
  • Dell Technologies
  • Hewlett Packard Enterprise(HPE)
  • Cisco
  • Qualcomm
  • Samsung Electronics
  • Huawei
  • Alibaba Cloud
  • Tencent Cloud
  • Lenovo
  • Micron Technology
  • Xilinx(AMD)

結論與建議

簡介目錄
Product Code: SQMIG45I2319

Global AI Infrastructure Market size was valued at USD 98.2 billion in 2024 and is poised to grow from USD 112.14 billion in 2025 to USD 324.42 billion by 2033, growing at a CAGR of 14.2% during the forecast period (2026-2033).

The global demand for AI infrastructure is fueled by the increasing adoption of generative AI, rapid digital transformation among enterprises, and the rise of cloud and hybrid architectures. Advancements in AI hardware and heightened government initiatives contribute to this growth, alongside an exponential surge in data generation. Industries increasingly deploy machine learning and automation, leading to a strong emphasis on data-driven decision-making, thereby driving investments in AI infrastructure. The reliance on cloud platforms and hyperscale data centers is significant, supported by government funding for AI research and smart infrastructure. However, challenges such as high capital and operational costs, energy consumption, sustainability issues, talent shortages, and concerns about data security and regulatory compliance may impede market penetration in the future.

Top-down and bottom-up approaches were used to estimate and validate the size of the Global AI Infrastructure market and to estimate the size of various other dependent submarkets. The research methodology used to estimate the market size includes the following details: The key players in the market were identified through secondary research, and their market shares in the respective regions were determined through primary and secondary research. This entire procedure includes the study of the annual and financial reports of the top market players and extensive interviews for key insights from industry leaders such as CEOs, VPs, directors, and marketing executives. All percentage shares split, and breakdowns were determined using secondary sources and verified through Primary sources. All possible parameters that affect the markets covered in this research study have been accounted for, viewed in extensive detail, verified through primary research, and analyzed to get the final quantitative and qualitative data.

Global AI Infrastructure Market Segments Analysis

Global AI Infrastructure Market is segmented by Component, Hardware Type, Deployment Model, End Use Industry, Organization Size and region. Based on Component, the market is segmented into Hardware, Software and Services. Based on Hardware Type, the market is segmented into GPUs & Accelerators, CPUs, Storage Systems, Networking Equipment and Edge AI Devices. Based on Deployment Model, the market is segmented into Cloud, On-premise and Hybrid. Based on End Use Industry, the market is segmented into IT & Telecom, BFSI, Healthcare, Automotive and Retail & E-commerce. Based on Organization Size, the market is segmented into Large Enterprises and Small & Medium Enterprises. Based on region, the market is segmented into North America, Europe, Asia Pacific, Latin America and Middle East & Africa.

Driver of the Global AI Infrastructure Market

One of the key market drivers for the global AI infrastructure market is the increasing demand for advanced data processing capabilities across various industries. As organizations strive to harness the power of artificial intelligence, the need for robust infrastructure that can support complex algorithms, large datasets, and real-time analytics has intensified. This demand is driven by the growing reliance on machine learning, deep learning, and data-driven decision-making, compelling businesses to invest in scalable cloud services, high-performance computing, and specialized hardware. Consequently, this trend not only enhances operational efficiency but also fuels innovation, making a strong case for the expansion of AI infrastructure capabilities.

Restraints in the Global AI Infrastructure Market

One significant market restraint for the Global AI Infrastructure Market is the rapidly evolving regulatory landscape surrounding data privacy and security. Governments worldwide are increasingly implementing stringent regulations aimed at protecting user data, which can complicate the deployment and integration of AI technologies. Organizations may face challenges in ensuring compliance with these regulations while trying to innovate and enhance their AI capabilities. Additionally, the fear of data breaches and the potential repercussions of non-compliance can hinder investments in AI infrastructure, slowing down market growth and limiting opportunities for advancement within the field.

Market Trends of the Global AI Infrastructure Market

The Global AI Infrastructure market is witnessing a significant trend towards hybrid and distributed models as enterprises seek to enhance cost-efficiency and performance. Organizations are increasingly partitioning their AI workloads among on-premises data centers, public cloud solutions, and edge environments, driven by considerations of latency sensitivity and stringent data governance requirements. This strategic realignment facilitates the retention of sensitive data within local boundaries, while simultaneously capitalizing on the expansive scalability offered by cloud resources for resource-intensive training tasks. As this trend continues to evolve, businesses are poised to optimize their AI capabilities, ensuring flexibility and compliance in a rapidly changing digital landscape.

Table of Contents

Introduction

  • Objectives of the Study
  • Market Definition & Scope

Research Methodology

  • Research Process
  • Secondary & Primary Data Methods
  • Market Size Estimation Methods

Executive Summary

  • Global Market Outlook
  • Key Market Highlights
  • Segmental Overview
  • Competition Overview

Market Dynamics & Outlook

  • Macro-Economic Indicators
  • Drivers & Opportunities
  • Restraints & Challenges
  • Supply Side Trends
  • Demand Side Trends
  • Porters Analysis & Impact
    • Competitive Rivalry
    • Threat of Substitute
    • Bargaining Power of Buyers
    • Threat of New Entrants
    • Bargaining Power of Suppliers

Key Market Insights

  • Key Success Factors
  • Market Impacting Factors
  • Top Investment Pockets
  • Ecosystem Mapping
  • Market Attractiveness Index, 2025
  • PESTEL Analysis
  • Value Chain Analysis
  • Pricing Analysis
  • Case Studies
  • Regulatory Landscape
  • Technology Assessment
  • Technology Assessment
  • Regulatory Landscape

Global AI Infrastructure Market Size by Component & CAGR (2026-2033)

  • Market Overview
  • Hardware
  • Software
  • Services

Global AI Infrastructure Market Size by Hardware Type & CAGR (2026-2033)

  • Market Overview
  • GPUs & Accelerators
  • CPUs
  • Storage Systems
  • Networking Equipment
  • Edge AI Devices

Global AI Infrastructure Market Size by Deployment Model & CAGR (2026-2033)

  • Market Overview
  • Cloud
  • On-premise
  • Hybrid

Global AI Infrastructure Market Size by End Use Industry & CAGR (2026-2033)

  • Market Overview
  • IT & Telecom
  • BFSI
  • Healthcare
  • Automotive
  • Retail & E-commerce

Global AI Infrastructure Market Size by Organization Size & CAGR (2026-2033)

  • Market Overview
  • Large Enterprises
  • Small & Medium Enterprises

Global AI Infrastructure Market Size & CAGR (2026-2033)

  • North America (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • US
    • Canada
  • Europe (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • Germany
    • Spain
    • France
    • UK
    • Italy
    • Rest of Europe
  • Asia Pacific (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • China
    • India
    • Japan
    • South Korea
    • Rest of Asia-Pacific
  • Latin America (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • Mexico
    • Brazil
    • Rest of Latin America
  • Middle East & Africa (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • GCC Countries
    • South Africa
    • Rest of Middle East & Africa

Competitive Intelligence

  • Top 5 Player Comparison
  • Market Positioning of Key Players, 2025
  • Strategies Adopted by Key Market Players
  • Recent Developments in the Market
  • Company Market Share Analysis, 2025
  • Company Profiles of All Key Players
    • Company Details
    • Product Portfolio Analysis
    • Company's Segmental Share Analysis
    • Revenue Y-O-Y Comparison (2023-2025)

Key Company Profiles

  • NVIDIA
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Intel
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • AMD
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Google
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Microsoft
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Amazon Web Services (AWS)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • IBM
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Oracle
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Dell Technologies
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Hewlett Packard Enterprise (HPE)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Cisco
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Qualcomm
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Samsung Electronics
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Huawei
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Alibaba Cloud
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Tencent Cloud
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Lenovo
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Micron Technology
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Xilinx (AMD)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments

Conclusion & Recommendations