![]() |
市場調查報告書
商品編碼
1858766
5G毫米波濾波器 - 全球市場佔有率和排名、總收入和需求預測(2025-2031年)5G mmWave Filters - Global Market Share and Ranking, Overall Sales and Demand Forecast 2025-2031 |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
全球 5G 毫米波濾波器市場預計在 2024 年達到 1.64 億美元,預計到 2031 年將達到 12.85 億美元,2025 年至 2031 年的複合年成長率為 34.7%。
本報告對近期關稅調整和國際戰略反制措施對 5G 毫米波濾波器的跨境產業佈局、資本配置模式、區域經濟相互依存關係和供應鏈重組進行了全面評估。
5G 是一系列創新技術的統稱,它將徹底改變無線通訊。雖然一些通訊服務供應商仍在評估高頻段(毫米波,簡稱 mmWave)是否會成為 5G 的主流技術,但許多其他服務提供者已經開始利用其潛力。結合固定無線存取等成熟解決方案,尚未充分利用的毫米波頻譜將滿足全球日益成長的高品質連接需求,同時促進創新應用場景的實現。自 2019 年首次推出以來,世界各地的服務供應商都在競相升級其網路以支援 5G,並爭取成為各自市場中的首批 5G 服務商。許多營運商表示,5G 的關鍵任務功能,例如更高的速度和更低的延遲,正在迅速擴展應用場景,並推動對資料和效能的需求。
全球5G毫米波濾波器的主要廠商包括TDK株式會社和Mini-Circuits公司。這兩家公司佔據超過70%的市場。北美是5G毫米波濾波器最大的市場,市佔率超過75%,其次是亞太地區,市佔率16%。按產品類型分類,n257濾波器佔據關鍵地位,市佔率超過75%。按應用領域分類,5G毫米波智慧型手機佔據關鍵地位,市佔率高達80%。
上游工程投入包括原料(低損耗陶瓷、高頻層壓板、氮化鋁和其他壓電材料以及高導電性導電金屬)、晶圓/基板加工(薄膜沉積、光刻和微加工)、腔體/波導元件的精密數控加工和金屬成型,以及用於毫米波頻段S參數和互調測試的測量設備。中游企業負責設計和製造濾波器元件、進行高頻調諧和封裝,並將濾波器整合到前端模組中。下游客戶包括高頻模組OEM廠商、智慧型手機OEM廠商、通訊基礎設施供應商、衛星終端製造商、汽車一級供應商和系統整合商。售後/現場服務和零件分銷商完善了整個供應鏈。由於濾波器性能對材料、製程偏差和組裝公差高度敏感,因此整個供應鏈中密切的技術合作十分常見。
該市場由大型多元化射頻元件供應商和濾波器專家組成。在毫米波濾波器領域競爭的全球一級射頻供應商,融合了材料知識、薄膜技術、封裝規模以及客戶關係(例如,村田製作所/TDK 等級別的元件製造商、擁有射頻前端產品組合的大型射頻半導體供應商以及專業的濾波器專家)。此外,一些專注於特定領域的廠商和精密加工製造商也提供高Q值腔體/波導濾波器以及用於基地台、衛星通訊和國防領域的客製化解決方案。競爭優勢包括插入損耗和帶頻寬抑制、Q值、頻寬控制、尺寸/重量比、可調諧性、毫米波生產產量比率,以及支援大量行動電話生產(而非小批量高性能基礎設施產品)的能力。與模組OEM廠商、先進封裝公司和測試實驗室建立策略合作夥伴關係十分普遍。
該行業正從早期商業部署過渡到更廣泛的密集化和規模化。近期成長將主要由都市區熱點地區的早期毫米波部署、固定無線存取以及新型毫米波消費性電子設備推動。中期趨勢包括密集化部署(小型基地台、中繼器)、寬頻毫米波頻譜競標以及高階載波聚合,以增加每個設備的濾波器數量。技術趨勢著重於高Q值、低損耗材料、矽絕緣波導 (SIW) 和微加工技術以實現小型化,以及可編程/可調諧濾波器以支援動態頻譜共用和多頻段無線電。系統促進因素包括:5G NR 毫米波頻段部署、用戶高吞吐量需求、小型基地台密集化部署、毫米波 CPE 和企業無線設備的廣泛應用,以及相關市場(行動衛星通訊、60 GHz 以上的汽車雷達)。
關鍵阻礙因素包括毫米波的物理傳播限制(每個網路需要更多站點和濾波器)、毫米波組件的高成本和嚴格的公差要求、熱設計和封裝方面的挑戰、高頻率下複雜的射頻測試和認證,以及供應鏈對高性能陶瓷和精密加工的集中度。政策和監管因素至關重要。頻譜分配和競標結果(國家監管機構/ITU/3GPP 的時間表)決定了目標市場窗口。基礎設施補貼計畫和城市規劃會影響小型基地台的部署。出口限制和在地採購規則可能會重塑供應商的企業發展。此外,標準/電磁相容性/安全要求也會影響產品上市時間。能夠將技術能力、生產規模、測試能力以及合規且具有地域彈性的供應鏈相結合的供應商將引領產業發展。
本報告旨在按地區/國家、類型和應用對全球 5G 毫米波濾波器市場進行全面分析,重點關注總銷售量、收入、價格、市場佔有率和主要企業的排名。
本報告以2024年為基準年,按銷量(千台)和收入(百萬美元)對5G毫米波濾波器市場規模、估算和預測進行了呈現,並涵蓋了2020年至2031年的歷史數據和預測數據。定量和定性分析將幫助讀者制定5G毫米波濾波器業務和成長策略,評估市場競爭,分析自身在當前市場中的地位,並做出明智的商業決策。
市場區隔
公司
按類型分類的細分市場
應用領域
按地區
The global market for 5G mmWave Filters was estimated to be worth US$ 164 million in 2024 and is forecast to a readjusted size of US$ 1285 million by 2031 with a CAGR of 34.7% during the forecast period 2025-2031.
This report provides a comprehensive assessment of recent tariff adjustments and international strategic countermeasures on 5G mmWave Filters cross-border industrial footprints, capital allocation patterns, regional economic interdependencies, and supply chain reconfigurations.
5G is a broad category of innovative technologies that will transform wireless communications. While some communication service providers still wonder if there is a place for the high band (millimeter wave, or mmWave) as a mainstream 5G technology, others are already harnessing the opportunities it presents. In combination with established solutions, like fixed wireless access, largely untapped millimeter-wave frequencies can help meet the increased global demands for high-quality connectivity - as well as facilitate exciting new use cases. Since its initial rollout in 2019, service providers across the globe have hurried to have their networks 5G enabled and become the first 5G players in their respective markets. Many are now reporting that the mission-critical capabilities of 5G, such as superior speeds and low latencies, are quickly expanding the number of use cases and intensifying demands for data and performance.
Global key players of 5G mmWave Filters include TDK Corporation, Mini-Circuits. Global top two manufacturers hold a share over 70%. North America is the largest market of 5G mmWave Filters, holds a share over 75%, followed by Asia-Pacific holds a share of 16%. In terms of product type, the n257 plays an important role with a share over 75%. In terms of application, 5G mmWave Smart Phone holds an important share, with a share of 80%.
Upstream inputs include raw materials (low-loss ceramics, high-frequency laminates, AlN and other piezoelectric materials, high-conductivity metals), wafer/substrate processing (thin-film deposition, lithography, micromachining), precision CNC and metal-forming for cavity/waveguide parts, and test & measurement equipment for S-parameter and intermodulation testing at mmWave. Midstream firms design and fabricate filter elements, perform RF tuning and packaging, and integrate filters into front-end modules. Downstream customers are RF-module OEMs, smartphone OEMs, telecom infrastructure vendors, satellite terminal makers, automotive Tier-1s and system integrators. Aftermarket/field service and component distributors round out the chain. Tight technical collaboration across the chain is typical because filter performance is highly sensitive to materials, process variation and assembly tolerances.
The market is served by large, diversified RF component suppliers and specialist filter houses. Global tier-one RF suppliers that compete in the mmWave filter space combine materials knowledge, thin-film and packaging scale, and customer relationships (e.g., major Murata/TDK-class component houses, large RF semiconductor vendors with RF-front-end portfolios, and dedicated filter specialists). In addition, niche players and precision mechanical shops supply high-Q cavity/waveguide filters and custom solutions for base stations, satcom and defense. Competition differentiates on insertion loss and out-of-band rejection, Q-factor, bandwidth control, size/weight, tunability, production yield at mmWave, and the ability to support handset volumes versus low-volume, high-performance infrastructure products. Strategic partnerships with module OEMs, advanced packaging houses and test labs are common.
The industry is transitioning from early commercial deployments to broader densification and scaling. Short-term growth is driven by initial mmWave rollouts in urban hotspots, fixed wireless access, and new mmWave-enabled consumer devices. Medium-term dynamics include densification (small cells, repeaters), wider mmWave spectrum auctions, and higher carrier aggregation that multiplies filter count per device. Technology trends emphasize higher Q and lower loss materials, SIW and micromachining for miniaturization, and programmable/tunable filters to support dynamic spectrum sharing and multi-band radios. System drivers are: 5G NR mmWave deployments, demand for higher per-user throughput, small-cell densification, proliferation of mmWave CPE and enterprise wireless, and adjacent markets (satcom on the move, automotive radar at >60 GHz).
Key constraints include the physical propagation limits of mmWave (necessitating more sites and more filters per network), high cost and tight tolerances of mmWave components, thermal and packaging challenges, complex RF testing and qualification at high frequencies, and supply-chain concentration for high-performance ceramics and precision machining. Policy and regulatory factors are highly consequential: spectrum allocation and auction results (national regulators/ITU/3GPP timing) determine addressable market windows; infrastructure subsidy programs and urban planning influence small-cell rollout; export controls or local-content rules can re-shape supplier footprints; and standards/EMC/safety requirements affect time-to-market. Vendors that can combine technical performance, manufacturing scale, test capability and compliant, geographically resilient supply chains will lead adoption.
This report aims to provide a comprehensive presentation of the global market for 5G mmWave Filters, focusing on the total sales volume, sales revenue, price, key companies market share and ranking, together with an analysis of 5G mmWave Filters by region & country, by Type, and by Application.
The 5G mmWave Filters market size, estimations, and forecasts are provided in terms of sales volume (K Units) and sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding 5G mmWave Filters.
Market Segmentation
By Company
Segment by Type
Segment by Application
By Region
Chapter Outline
Chapter 1: Introduces the report scope of the report, global total market size (value, volume and price). This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.
Chapter 2: Detailed analysis of 5G mmWave Filters manufacturers competitive landscape, price, sales and revenue market share, latest development plan, merger, and acquisition information, etc.
Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 5: Sales, revenue of 5G mmWave Filters in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.
Chapter 6: Sales, revenue of 5G mmWave Filters in country level. It provides sigmate data by Type, and by Application for each country/region.
Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product sales, revenue, price, gross margin, product introduction, recent development, etc.
Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.
Chapter 9: Conclusion.