封面
市場調查報告書
商品編碼
1910427

雷達感測器:市場佔有率分析、產業趨勢與統計、成長預測(2026-2031)

Radar Sensors - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2026 - 2031)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預計雷達感測器市場將從 2025 年的 245.4 億美元成長到 2026 年的 285.8 億美元,到 2031 年將達到 612 億美元,2026 年至 2031 年的複合年成長率為 16.45%。

雷達感測器市場-IMG1

這項快速擴張反映了該技術正從國防應用領域轉型為汽車安全、工業自動化、無人機測繪和智慧基礎設施專案等大批量應用領域。歐盟通用安全法規(GDPR)等安全法規的訂定,例如強制要求新車配備基於77-81 GHz雷達的自動緊急煞車系統,正在推動該技術的應用。供應方面的促進因素包括價格合理的毫米波晶片組和氮化鎵功率元件,這些元件在提高測距解析度的同時,還能降低尺寸、重量和功耗。亞太地區強勁的軍事現代化、歐洲5G道路計劃的擴展以及全球範圍內氣候適應型氣象雷達網路的建設,都進一步推動了潛在需求。近期面臨的挑戰主要集中在10 GHz以下頻寬的頻譜擁塞、成像陣列校準成本以及由於中國佔據98%的鎵產量佔有率而導致的鎵供應風險。

全球雷達感測器市場趨勢與洞察

汽車安全系統中77-81 GHz雷達的應用日益廣泛

監管機構和汽車製造商建議使用77-81 GHz頻段,相比傳統的24 GHz設備,具有更遠的探測距離和更高的角度解析度。大陸集團的ARS640雷達偵測距離超過300米,能夠進行適用於L2+級自動駕駛的物體分類。中國工業和資訊化部於2022年暫停核准新的24 GHz雷達,迫使國內汽車製造商轉向此頻段。博世也擴大了在摩托車領域的業務,為KTM摩托車配備了探測距離達210公尺的雷達,實現了主動車距控制巡航系統和盲點警告功能。這些發展正在推動各類車輛穩定採用雷達感測器,並促進雷達感測器市場的成長。

無人機地形測繪對緊湊型成像雷達的需求激增

多旋翼無人機採用輕型合成孔徑雷達,即使在光學載重失效的植被和雲層區域,也能產生亞米級高程模型。研究表明,72.73%的礦場探勘任務優先選擇多旋翼無人機而非直升機平台,在提高空間解析度的同時,還能降低60%的測量成本。美國地質調查局的移動雷達站可在野火發生後數分鐘內採集降雨徑流數據,進而助力緊急應變。這些成功案例正在推動高頻寬晶片組和機載處理技術的研發投入,進而促進雷達感測器市場的擴張。

10 GHz 以下頻寬頻率分配的限制

雷達開發人員與通訊業者和衛星營運商爭奪10GHz以下的有限頻譜資源。美國營運120多部3GHz以下的雷達,限制了民用頻率重複使用的潛力。為了符合國際法規,聯邦通訊委員會(FCC)近期收緊了24GHz頻段的帶頻寬限制,迫使廠商對設計進行修改。認證流程可能長達九個月,導致產品發布延遲,並在短期內限制雷達感測器市場的發展。

細分市場分析

到2025年,非成像設備將佔總收入的70.35%,這表明它們在泊車輔助和基礎自適應巡航控制領域已被廣泛應用。然而,隨著L2級及以上自動駕駛技術的日益普及,影像解決方案預計到2031年將以18.12%的複合年成長率成長。恩智浦半導體(NXP)和sinPro的48通道入門4D單元可提供1度方位角和每幀2000個點雲,這標誌著高解析度感知技術的廣泛應用。影像功能使自動煞車系統能夠識別行人和道路標誌,從而將OEM廠商的應用範圍擴展到豪華車以外的領域。預計到2031年,支援成像功能的雷達感測器市場規模將達到197.6億美元,這將推動軟體定義車輛預算的成長。同時,在識別精度要求不高的領域,例如送貨機器人、堆高機碰撞警報和降雨量估算,成本最佳化的非成像類別仍將保持其主導地位。製造商們正在提供結合簡單 FMCW晶粒和封裝天線設計的產品,以降低組件成本並維持雷達感測器市場的成長。

目前,競爭性藍圖將嵌入式訊號處理與邊緣AI加速相結合,以降低延遲。大陸集團的ARS640整合了神經網路濾波,透過即時識別弱勢道路使用者來提升功能安全指標。在材料方面,矽鍺前端對現有的砷化鎵(GaAs)元件構成挑戰,使得大規模生產的晶粒價格低於10美元。這項成本優勢支持中端車輛成像性能的逐步提升,並為雷達感測器進入Scooter和微型出行領域鋪平了道路。

77-81 GHz頻寬在傳輸損耗和天線孔徑面積之間實現了最佳平衡,預計將佔2025年收入的42.55%。此頻寬能夠在250公尺範圍內實現車輛探測,同時保持成本效益。歐洲、中國和北美地區的監管協調簡化了認證流程,擴大了雷達感測器市場。意法半導體(STMicroelectronics)的77 GHz收發器在冰雪和泥濘環境中仍能保持性能,證明其適用於惡劣環境下的路側設備。在94 GHz以上頻段,超寬頻通道可實現亞厘米級解析度,用於路面裂縫監測和醫療微多普勒成像。隨著晶圓級氮化鎵(GaN)功率放大器技術的成熟,預計到2031年,94 GHz以上頻段的出貨量將成長兩倍以上,複合年成長率(CAGR)將達到21.25%。

10 GHz 以下的頻寬正面臨飽和,迫使開發人員轉向更高的頻寬。中國已暫停核准新的 24 GHz 車載雷達,加速了全球頻段的遷移。短程 60 GHz 設備在車內感知、人員偵測和手勢控制方面表現出色。德克薩斯(TI) 的單晶片雷達無需攝影機即可將兒童存在偵測的準確率提高到 98%。包含 24 GHz 角落單元、77 GHz 前單元和 60 GHz 車內單元的複雜多頻段配置,正在從多個層面拓展雷達感測器市場。

區域分析

北美地區在2024年仍將是最大的區域貢獻者,這主要得益於先進駕駛輔助系統和大規模國防升級的普及。然而,鎵供應風險威脅著美國6,020億美元的經濟產出,促使政策制定者推動氮化鎵外延和廢料回收的在地化(csis.org)。儘管美國因認證延遲而面臨減緩商業部署的挑戰,但加拿大正在擴大其汽車雷達測試設施,而墨西哥則受益於一級供應商生產線的近岸外包。

由於統一的安全法規和大規模的智慧道路投資,歐洲預計在未來將實現最高的複合年成長率。歐盟自動緊急煞車系統(AEB)強制要求所有車型統一安裝感知器,各國道路管理機構也正在部署雷達進行壅塞分析。英國smartmicro公司已交付超過1,000個路側單元,展現了其強大的市場整合能力(smartmicro.com)。供應鏈回流有助於緩解半導體短缺問題,而5G走廊正在同步整合雷達和V2X信標。

亞太地區正在推動國防和氣象領域的支出成長。日本的AN/SPY-7飛彈部署和韓國的L-SAM II計劃就是高預算專案推動國內氮化鎵(GaN)代工廠發展的典型例子。中國將汽車雷達頻率從24GHz轉向77GHz的政策轉變,正加速本土OEM廠商的轉型。印度價值5000萬美元的氣象雷達訂單表明,公共部門對精準氣象監測的需求強勁。這些共同努力正在將雷達感測器市場從消費移動領域拓展到更廣泛的應用領域。

其他福利:

  • Excel格式的市場預測(ME)表
  • 3個月的分析師支持

目錄

第1章 引言

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章 市場情勢

  • 市場概覽
  • 市場促進因素
    • 77-81GHz雷達在汽車安全系統的應用日益廣泛
    • 無人機地形測繪對緊湊型成像雷達的需求激增
    • 亞太地區軍方加大對主動相控陣雷達(AESA雷達)的投入
    • 工業機器人對用於避障的毫米波感測器的需求日益成長
    • 促進歐洲智慧高速公路和交通監控雷達的基礎建設
    • 氣候變遷促使多普勒天氣雷達在沿海地區得到更廣泛的應用
  • 市場限制
    • 10 GHz 以下頻段頻率分配的限制
    • 成像雷達陣列的高品質維護和維修成本
    • 高功率毫米波晶片組的溫度控管挑戰
    • 零售業3D行人追蹤雷達的資料隱私問題
  • 價值/供應鏈分析
  • 監理展望
  • 技術展望
  • 波特五力分析
    • 供應商的議價能力
    • 買方的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭

第5章 市場規模與成長預測

  • 按類型
    • 成像雷達
    • 非成像雷達
  • 按頻段
    • 10 GHz 以下(HF/UHF/ L波段)
    • 24 GHz ISM頻段
    • 60-64 GHz
    • 77-81 GHz
    • 94 GHz 或更高
  • 按範圍
    • 短程雷達感測器(小於30公尺)
    • 中程雷達感測器(30-150公尺)
    • 遠程雷達感測器(超過150公尺)
  • 透過技術
    • 脈衝雷達
    • 調頻連續波(FMCW)雷達
    • 相位陣列/AESA雷達
    • 數位調變與MIMO雷達
  • 最終用戶
    • 航太/國防
    • 安防監控(固定和移動)
    • 工業自動化與機器人
    • 環境和氣象監測
    • 交通監控和智慧基礎設施
    • 醫療和護理機構
    • 其他最終用戶
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
      • 墨西哥
    • 歐洲
      • 英國
      • 德國
      • 法國
      • 義大利
      • 其他歐洲地區
    • 亞太地區
      • 中國
      • 日本
      • 印度
      • 韓國
      • 亞太其他地區
    • 中東
      • 以色列
      • 沙烏地阿拉伯
      • 阿拉伯聯合大公國
      • 土耳其
      • 其他中東地區
    • 非洲
      • 南非
      • 埃及
      • 其他非洲地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲

第6章 競爭情勢

  • 市場集中度
  • 策略性舉措(併購、資金籌措、合作)
  • 市佔率分析
  • 公司簡介
    • Robert Bosch GmbH
    • Continental AG
    • Infineon Technologies AG
    • NXP Semiconductors NV
    • Denso Corporation
    • Hella GmbH and Co. KGaA
    • Veoneer Inc.
    • STMicroelectronics NV
    • Texas Instruments Incorporated
    • Analog Devices Inc.
    • Renesas Electronics Corporation
    • Aptiv PLC
    • ZF Friedrichshafen AG
    • Valeo SA
    • Hitachi Astemo Ltd.
    • Smart Microwave Sensors GmbH
    • InnoSenT GmbH
    • Baumer Group
    • Banner Engineering Corp.
    • Lockheed Martin Corporation
    • Raytheon Technologies Corp.
    • Northrop Grumman Corp.
    • Thales Group
    • Honeywell International Inc.

第7章 市場機會與未來展望

簡介目錄
Product Code: 57286

The radar sensor market is expected to grow from USD 24.54 billion in 2025 to USD 28.58 billion in 2026 and is forecast to reach USD 61.2 billion by 2031 at 16.45% CAGR over 2026-2031.

Radar Sensors - Market - IMG1

The rapid scaling reflects the technology's migration from exclusive defense use to high-volume automotive safety, industrial automation, drone mapping, and smart infrastructure programs. Adoption is propelled by safety regulations such as the European Union General Safety Regulation, which mandates automatic emergency braking using 77-81 GHz radar in new vehicles. Supply-side catalysts include affordable millimeter-wave chipsets and gallium-nitride power devices that enhance range resolution while lowering size, weight, and power requirements. Robust military modernization in Asia-Pacific, expanding 5G-enabled road projects in Europe, and climate-resilient weather radar networks worldwide deepen addressable demand. Near-term challenges center on below-10 GHz spectrum congestion, calibration expenses for imaging arrays, and gallium supply risks stemming from China's 98% production dominance.

Global Radar Sensors Market Trends and Insights

Increasing adoption of 77-81 GHz radars in automotive safety systems

Regulators and automakers endorse 77-81 GHz because it delivers longer detection ranges and sharper angular resolution than legacy 24 GHz devices. Continental's ARS640 exceeds 300 m range and enables object classification fit for Level 2+ autonomy. China's Ministry of Industry and Information Technology halted new 24 GHz radar approvals in 2022, compelling local OEMs to shift frequency bands. Bosch extended the band to motorcycles, equipping KTM bikes with 210 m range radar for adaptive cruise and blind-spot warning. These developments reinforce steady sensor penetration across vehicle classes, underpinning radar sensor market growth.

Surging demand for compact imaging radars in drone-based terrain mapping

Multirotor drones use lightweight synthetic-aperture radars to generate sub-meter elevation models even in vegetation or cloud cover where optical payloads fail. Research shows 72.73% of mining exploration missions now favor multirotor over helicopter platforms, cutting survey cost by 60% while improving spatial granularity. The U.S. Geological Survey's mobile radar observatory captures rainfall-runoff data minutes after wildfires, supporting emergency response. Such proof points fuel R&D investment in higher-bandwidth chipsets and on-board processing, broadening the radar sensor market.

Spectrum allocation constraints in sub-10 GHz bands

Radar developers compete with telecom and satellite operators for scarce sub-10 GHz slots. The U.S. Department of Defense runs more than 120 radars below 3 GHz, limiting civilian spectrum re-farm potential. The FCC recently tightened 24 GHz out-of-band limits to satisfy global rulings, forcing design changes. Certification queues can stretch nine months, delaying product launches and curbing near-term radar sensor market adoption.

Other drivers and restraints analyzed in the detailed report include:

  1. Rising military spend on AESA radars in Asia-Pacific
  2. Growing need for mm-wave sensors in industrial robot collision avoidance
  3. High calibration & maintenance cost of imaging radar arrays

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Non-imaging devices represented 70.35% of 2025 revenue, illustrating entrenched use in parking assistance and basic adaptive cruise. Imaging solutions, however, are forecast to post an 18.12% CAGR through 2031 as Level 2+ autonomy proliferates. NXP and sinPro's 48-channel entry-level 4D unit reaches 1-degree azimuth and 2,000 point clouds per frame, signaling democratization of high-resolution perception. Imaging capability lets automated brakes distinguish pedestrians from roadside signs, pushing OEM fitment beyond luxury trims. The radar sensor market size for imaging-enabled modules is projected to reach USD 19.76 billion by 2031, capturing escalating software-defined vehicle budgets. Conversely, the cost-optimized non-imaging category retains dominance in delivery robots, forklift collision alerts, and rainfall estimation where identification finesse is less critical. Manufacturers bundle simple FMCW dies with antenna-in-package designs to lower bill-of-material cost and sustain the wider radar sensor market.

Competitive roadmaps now combine embedded signal processors with edge AI acceleration to shrink latency. Continental's ARS640 integrates neural network filtering to classify vulnerable road users in real time, raising functional safety metrics. On the materials side, silicon germanium front-ends challenge GaAs incumbents, promising sub-USD 10 die price at high volumes. This cost curve supports incremental imaging upgrades in mid-segment cars and paves the way for radar sensor market penetration in scooters and micro-mobility.

The 77-81 GHz tier held 42.55% 2025 revenue due to a sweet spot between path loss and antenna aperture, enabling 250 m automotive detection while remaining cost-effective. Regulatory harmonization in Europe, China, and North America cut certification complexity and boosted the radar sensor market. STMicroelectronics' 77 GHz transceiver sustains performance in snow or dirt, validating use in harsh roadside units. Above 94 GHz, ultra-wideband channels achieve sub-centimeter resolution prized in pavement crack monitoring and medical micro-Doppler imaging. With a 21.25% CAGR, >=94 GHz shipments are set to more than triple by 2031 as wafer-scale GaN power amplifiers mature.

Spectrum below 10 GHz faces saturation, pushing developers to migrate upward. China no longer approves new 24 GHz automotive radars, accelerating global pivot. Short-range 60 GHz gear excels in cabin sensing, occupancy detection, and gesture control; Texas Instruments' single-chip radar improves child presence alert accuracy to 98% without cameras. Blended multi-band architectures deploy 24 GHz corners, 77 GHz front units, and 60 GHz interiors, expanding the radar sensor market across multiple tiers.

The Radar Sensor Market is Segmented by Type (Imaging Radar, Non-Imaging Radar), Frequency Band (More Than 10 GHz, 24 GHz ISM Band, and More), Range (Short-Range Radar Sensor, Medium-Range Radar Sensor, and More), Technology (Pulsed Radar, Phased-Array / AESA Radar, and More), End-User and Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America remained the largest regional contributor in 2024, supported by advanced driver-assistance deployment and sizable defense upgrades. Gallium supply risk, however, threatens USD 602 billion of U.S. economic output, pushing policymakers to localize GaN epitaxy and recycle scrap csis.org. The United States also grapples with certification delays that slow civilian rollouts, while Canada scales automotive radar test facilities and Mexico benefits from near-shoring Tier-1 production lines.

Europe posts the highest forward CAGR due to unified safety laws and expansive smart-road investments. The EU's AEB mandate ensures uniform sensor installation across vehicle classes, while national road agencies deploy radar for congestion analytics. smartmicro UK surpassed 1,000 roadside units, illustrating integrator momentum smartmicro.com. Supply-chain reshoring counters semiconductor scarcity, and 5G corridors embed radar hand-in-hand with V2X beacons.

Asia-Pacific leads defense and weather spending. Japan's AN/SPY-7 roll-out and South Korea's L-SAM II project typify high-budget programs driving domestic GaN foundry growth. China's policy shift away from 24 GHz automotive radar accelerates migration to 77 GHz across local OEM plants. India's USD 50 million weather radar order demonstrates public-sector appetite for precision meteorology. Collectively, these initiatives expand the radar sensor market beyond consumer mobility.

  1. Robert Bosch GmbH
  2. Continental AG
  3. Infineon Technologies AG
  4. NXP Semiconductors N.V.
  5. Denso Corporation
  6. Hella GmbH and Co. KGaA
  7. Veoneer Inc.
  8. STMicroelectronics N.V.
  9. Texas Instruments Incorporated
  10. Analog Devices Inc.
  11. Renesas Electronics Corporation
  12. Aptiv PLC
  13. ZF Friedrichshafen AG
  14. Valeo SA
  15. Hitachi Astemo Ltd.
  16. Smart Microwave Sensors GmbH
  17. InnoSenT GmbH
  18. Baumer Group
  19. Banner Engineering Corp.
  20. Lockheed Martin Corporation
  21. Raytheon Technologies Corp.
  22. Northrop Grumman Corp.
  23. Thales Group
  24. Honeywell International Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Increasing Adoption of 77-81 GHz Radars in Automotive Safety Systems
    • 4.2.2 Surging Demand for Compact Imaging Radars in Drone-based Terrain Mapping
    • 4.2.3 Rising Military Spend on Active Electronically Scanned Array (AESA) Radars in Asia-Pacific
    • 4.2.4 Growing Need for mm-Wave Sensors in Industrial Robot Collision Avoidance
    • 4.2.5 Infrastructure Push for Smart Highways and Traffic-Monitoring Radars in Europe
    • 4.2.6 Climate-change-driven Uptake of Doppler Weather Radars in Coastal Regions
  • 4.3 Market Restraints
    • 4.3.1 Spectrum Allocation Constraints in Sub-10 GHz Bands
    • 4.3.2 High Calibration and Maintenance Cost of Imaging Radar Arrays
    • 4.3.3 Thermal Management Challenges in High-power mm-Wave Chipsets
    • 4.3.4 Data-privacy Concerns Over 3-D People-tracking Radars in Retail
  • 4.4 Value / Supply-Chain Analysis
  • 4.5 Regulatory Outlook
  • 4.6 Technological Outlook
  • 4.7 Porter's Five Forces Analysis
    • 4.7.1 Bargaining Power of Suppliers
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Threat of New Entrants
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Threat of Competitive Rivalry

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Type
    • 5.1.1 Imaging Radar
    • 5.1.2 Non-Imaging Radar
  • 5.2 By Frequency Band
    • 5.2.1 Less than 10 GHz (HF/UHF/L-Band)
    • 5.2.2 24 GHz ISM Band
    • 5.2.3 60-64 GHz
    • 5.2.4 77-81 GHz
    • 5.2.5 94 GHz and Above
  • 5.3 By Range
    • 5.3.1 Short-range Radar Sensor (less than 30 m)
    • 5.3.2 Medium-range Radar Sensor (30-150 m)
    • 5.3.3 Long-range Radar Sensor ( greater than 150 m)
  • 5.4 By Technology
    • 5.4.1 Pulsed Radar
    • 5.4.2 Frequency-Modulated Continuous-Wave (FMCW) Radar
    • 5.4.3 Phased-Array / AESA Radar
    • 5.4.4 Digital Modulation and MIMO Radar
  • 5.5 By End-User
    • 5.5.1 Automotive
    • 5.5.2 Aerospace and Defense
    • 5.5.3 Security and Surveillance (Fixed and Mobile)
    • 5.5.4 Industrial Automation and Robotics
    • 5.5.5 Environment and Weather Monitoring
    • 5.5.6 Traffic Monitoring and Smart Infrastructure
    • 5.5.7 Healthcare and Assisted-Living
    • 5.5.8 Other End-Users
  • 5.6 By Geography
    • 5.6.1 North America
      • 5.6.1.1 United States
      • 5.6.1.2 Canada
      • 5.6.1.3 Mexico
    • 5.6.2 Europe
      • 5.6.2.1 United Kingdom
      • 5.6.2.2 Germany
      • 5.6.2.3 France
      • 5.6.2.4 Italy
      • 5.6.2.5 Rest of Europe
    • 5.6.3 Asia-Pacific
      • 5.6.3.1 China
      • 5.6.3.2 Japan
      • 5.6.3.3 India
      • 5.6.3.4 South Korea
      • 5.6.3.5 Rest of Asia-Pacific
    • 5.6.4 Middle East
      • 5.6.4.1 Israel
      • 5.6.4.2 Saudi Arabia
      • 5.6.4.3 United Arab Emirates
      • 5.6.4.4 Turkey
      • 5.6.4.5 Rest of Middle East
    • 5.6.5 Africa
      • 5.6.5.1 South Africa
      • 5.6.5.2 Egypt
      • 5.6.5.3 Rest of Africa
    • 5.6.6 South America
      • 5.6.6.1 Brazil
      • 5.6.6.2 Argentina
      • 5.6.6.3 Rest of South America

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves (MandA, Funding, Partnerships)
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles {(includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)}
    • 6.4.1 Robert Bosch GmbH
    • 6.4.2 Continental AG
    • 6.4.3 Infineon Technologies AG
    • 6.4.4 NXP Semiconductors N.V.
    • 6.4.5 Denso Corporation
    • 6.4.6 Hella GmbH and Co. KGaA
    • 6.4.7 Veoneer Inc.
    • 6.4.8 STMicroelectronics N.V.
    • 6.4.9 Texas Instruments Incorporated
    • 6.4.10 Analog Devices Inc.
    • 6.4.11 Renesas Electronics Corporation
    • 6.4.12 Aptiv PLC
    • 6.4.13 ZF Friedrichshafen AG
    • 6.4.14 Valeo SA
    • 6.4.15 Hitachi Astemo Ltd.
    • 6.4.16 Smart Microwave Sensors GmbH
    • 6.4.17 InnoSenT GmbH
    • 6.4.18 Baumer Group
    • 6.4.19 Banner Engineering Corp.
    • 6.4.20 Lockheed Martin Corporation
    • 6.4.21 Raytheon Technologies Corp.
    • 6.4.22 Northrop Grumman Corp.
    • 6.4.23 Thales Group
    • 6.4.24 Honeywell International Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-need Assessment