![]() |
市場調查報告書
商品編碼
1907295
玻璃纖維:市場佔有率分析、產業趨勢與統計、成長預測(2026-2031)Glass Fiber - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2026 - 2031) |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
2025年玻璃纖維市場價值為802萬噸,預計2031年將達到1,017萬噸,高於2026年的834萬噸。
預計在預測期(2026-2031 年)內,複合年成長率將達到 4.03%。

需求韌性反映了該材料兼具抗張強度、耐腐蝕性和成本效益的獨特優勢,使其在基礎設施、運輸和能源系統中持續取代金屬和其他傳統材料。疫情導致的經濟放緩之後,建築隔熱材料的訂單迅速恢復。電動車 (EV) 專案加速了複合材料在汽車平台中的應用,而風力發電發展則推動了葉片產量創下新高。這三大需求支柱,以及低碳生產線和閉合迴路回收等產品創新,正幫助生產商抵禦不斷上漲的原料成本和貿易不確定性。產能合理化和區域自給自足計畫也在重塑競爭策略,供應商正將自身定位在更靠近終端用戶成長中心的位置。
2024年,亞太地區的建築支出強勁反彈,各國政府紛紛實施經濟獎勵策略,其中包括資料中心園區、半導體工廠和公共交通網路等項目。這些計劃指定使用高性能隔熱材料以減少營運過程中的碳排放,玻璃棉在玻璃纖維市場的競標清單中優先於其他R值較低的替代品。在印度,綠建築認證正被納入市政核准流程,鼓勵開發商選擇可回收和阻燃的隔熱材料。由於玻璃纖維增強聚合物(GFRP)鋼筋在水下環境中的腐蝕速度比鋼材慢,因此在地下交通走廊中越來越受到關注。主要製造商正在改造現有熔爐,並安裝由再生能源運作的新型低碳熔爐,從而縮短大都會圈建設叢集的前置作業時間。 [1] 雖然新增產能緩解了供應緊張的局面,但預計到2026年,區域需求動能將使運轉率維持在85%以上。
由於電池式電動車(BEV) 專案明顯重視減重帶來的每公斤續航里程優勢,平台工程師正在用複合材料取代短切聚丙烯和長纖維熱塑性塑膠,用於結構支架、座椅框架和引擎室組件。一級供應商正在將複合材料鋼板彈簧在保持疲勞壽命的同時,可減輕 30% 的非懸掛重量,從而推動玻璃纖維市場的需求成長。除了滑板式底盤外,高壓電池機殼也擴大採用阻燃玻璃纖維/環氧樹脂外層,而非結構發泡材,以提供隔熱和電磁相容性。汽車採購團隊也在評估混合層壓結構,這種結構僅在應力集中區域使用碳纖維增強材料,並透過第二層玻璃纖維來抵消其高成本。這種材料組合增強了專為 A 級表面處理而設計的短切纖維、粗紗和多端粗紗的長期需求前景。
中國、美國和中東的擴建計劃預計將在2023年至2027年間使全球碳纖維名目產能翻倍。規模經濟、聚丙烯腈前驅成本的不斷降低以及自動化已使平均價格較2022年水準下降超過15%。隨著成本曲線的下降,汽車和航太工程師正在重新評估特定結構部件的材料選擇,這加劇了玻璃纖維市場的競爭壓力。碳纖維和玻璃纖維交替使用的混紡織物,旨在平衡剛性和抗衝擊性,進一步抑制了高性能材料市場對玻璃纖維的需求。玻璃纖維製造商正透過開發高模量S玻璃和耐腐蝕E-CR配方來應對,但這些改進只能縮小而非消除與碳纖維的價格差距。除非碳價格和回收補貼有利於玻璃纖維,否則在下一個產品週期中,高階應用市場佔有率可能會轉向富含碳纖維的層壓板。
粗紗仍將是成長最快的產品形式,預計到2025年將佔總需求的33.41%。其筆直的纖維結構為長度超過100公尺的渦輪機蒙皮提供了必要的單向強度,僅此一項應用就佔全球粗紗貨量的三分之一。受海外產能提升和汽車包覆成型複合複合材料(例如鋼板彈簧、座椅靠背、電池框架)應用擴張的推動,粗紗所佔的玻璃纖維市場規模預計將以每年4.39%的速度成長。諸如在線連續切割和先進的上漿配方等製程改進,能夠改善潤濕性並減少空隙率,從而提高拉擠成型和纏繞成型的生產效率。
製造商們也在測試在捲繞站應用虛擬感測器。數據傳輸到基於雲端的品管模組可以減少廢棄物並追蹤碳足跡,凸顯了數位化在玻璃纖維市場日益成長的重要性。氈材佔據第二大市場佔有率,是噴塗船體和屋頂膜的首選材料,在這些應用中,貼合性比方向強度更為重要。纖維絲和紗線則服務於對直徑公差要求嚴格、含膠量極低的細分市場,例如PCB層壓板、過濾介質和5G雷達罩用織物。
本玻璃纖維報告按產品形態(粗紗、氈片、纖維束等)、纖維類型(E玻璃、S玻璃、E-CR玻璃等)、終端用戶行業(建築、汽車、風力發電、航太與國防、船舶、體育休閒及其他終端用戶行業)和地區(亞太、北美、歐洲等)進行細分。市場預測以噸為單位。
預計到2025年,亞太地區將佔全球出貨量的49.78%,並在2031年之前保持領先地位,年複合成長率達4.51%。各國產業政策正推動渦輪葉片、電動車零件和高鐵零件的國內採購,有效保障了玻璃纖維市場的本土供應商。中國正在其風電場投資建造碳中和熔爐,這將減少隱含排放,並使出口產品轉向低碳產品類型。
北美市場正在成長,抵消了因建築節能標準提高和電動車平台推廣而導致的石油天然氣複合管道需求放緩的影響。太陽能和風能發電稅收優惠政策的擴大正在加速渦輪機葉片的更換週期,這一趨勢將使北美中部地區的粗紗紗廠受益。美國部分州強制使用再生材料的政策鼓勵了玻璃廢料的利用,從而支撐了廢料市場並減少了對進口堿灰的依賴。歐洲的前景取決於北海和波羅的海離岸風力發電的擴張,但正在調查中的貿易保護措施可能會透過提高對亞洲產粗紗的關稅來重組供應粗紗。玻璃纖維增強壓力容器有望成為連接沿岸地區和歐洲的綠色氫能走廊的早期應用對象。拉丁美洲的基礎規模較小,主要依賴巴西的風電場和墨西哥的汽車組裝廠,這兩家工廠在疫情後都在提高產量。儘管區域生產商可能面臨原料進口成本的挑戰,但自由貿易協定和近岸外包計畫正在吸引旨在縮短跨太平洋航運路線的投資。
The Glass Fiber Market was valued at 8.02 Million tons in 2025 and estimated to grow from 8.34 Million tons in 2026 to reach 10.17 Million tons by 2031, at a CAGR of 4.03% during the forecast period (2026-2031).

Demand resilience reflects the material's combination of tensile strength, corrosion resistance, and cost efficiency, characteristics that continue to displace metals and other legacy materials in infrastructure, mobility, and energy systems. Construction insulation orders recovered quickly after pandemic-related slowdowns, electric-vehicle (EV) programs accelerated composite uptake in automotive platforms, and wind-energy commitments triggered record blade production. These three demand pillars, together with product innovations such as low-carbon manufacturing lines and closed-loop recycling, are helping producers withstand raw-material cost inflation and trade uncertainties. Capacity rationalization and regional self-sufficiency programs are also reshaping competitive strategies as suppliers position themselves close to end-user growth hubs.
Asia-Pacific construction spending rebounded strongly in 2024 as governments advanced stimulus pipelines encompassing data-center campuses, semiconductor fabs, and mass-transit networks. These projects specify high-performance insulation to curb operational carbon, placing glass wool on tender lists ahead of lower-R-value substitutes within the glass fiber market. In India, green-building certification is embedded in municipal approval workflows, encouraging developers to select recyclable, flame-resistant insulation. Underground transit corridors highlight glass fiber reinforced polymer (GFRP) rebar because corrosion rates are lower than steel in water-logged environments. Major producers responded with brownfield furnace debottlenecking and new low-carbon melters powered by renewable electricity, actions that shorten lead times to metropolitan construction clusters[1]. Supply tightness has begun to ease as additional capacity ramps up, yet regional demand momentum suggests utilization will remain above 85% through 2026.
Battery-electric vehicle programs reward every kilogram saved with measurable range extension, so platform engineers substitute chopped-strand polypropylene and long-fiber thermoplastics in structural brackets, seat frames, and under-hood components. Tier-1 suppliers have commercialized composite leaf springs that cut unsprung mass by 30% while retaining fatigue life, reinforcing demand trends in the glass fiber market. Beyond the skateboard chassis, high-voltage battery enclosures now specify flame-retardant glass fiber/epoxy skins over structural foams, combining thermal shielding with electromagnetic compatibility. Automotive procurement teams also evaluate hybrid lay-ups that place carbon reinforcement only in load-critical zones, offsetting the latter's higher cost with glass fiber in secondary layers. The resulting material mix strengthens long-term demand visibility for chopped strands, rovings, and multi-end rovings designed for class-A surface finishes.
Expansion projects in China, the United States, and the Middle East are doubling global carbon-fiber nameplate capacity between 2023 and 2027. Economies of scale, lower-cost polyacrylonitrile precursors, and automation have already trimmed average prices by more than 15% compared with 2022 levels. As cost curves fall, automotive and aerospace engineers revisit material selection for selective structural parts, intensifying competitive pressures within the glass fiber market. Hybrid fabrics that alternate carbon and glass to balance stiffness and impact resistance further cannibalize glass volumes at the top of the performance pyramid. Glass fiber producers counteract by developing higher-modulus S-glass and corrosion-resistant E-CR formulations, though these upgrades narrow, rather than eliminate, the price gap to carbon. Unless carbon pricing or recycling credits favor glass, the premium application share may drift toward carbon-rich laminates over the next product cycle.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
Rovings anchored 33.41% of 2025 demand and remain the fastest-expanding product form. Their linear-strand architecture delivers the unidirectional strength essential for 100-meter-plus turbine skins, a use case that alone accounts for a third of global roving shipments. The glass fiber market size attributed to roving is forecast to grow 4.39% annually as offshore installations escalate and as automotive over-molded composites gain scale in leaf springs, seat backs, and battery frames. Process upgrades such as inline cake cutting and advanced sizing formulations improve wet-out and reduce void content, enabling higher throughput in pultrusion and filament winding.
Producers are also trialing virtual sensors on winder stations, transmitting data to cloud-based quality modules that cut waste and document carbon footprints-digital upgrades increasingly relevant across the glass fiber market. Mats occupy the second-largest slot, favored for spray-up boat hulls and roofing membranes where conformability outweighs directional strength. Strands and yarns cater to PCB laminates, filtration, and 5G radome fabrics, niches that demand tight diameter tolerance and minimal shot content.
The Glass Fiber Report is Segmented by Product Form (Roving, Mats, Strands, and More), Fiber Type (E-Glass, S-Glass, E-CR Glass, and More), End-User Industry (Building and Construction, Automotive, Wind Energy, Aerospace and Defense, Marine, Sports and Leisure, and Other End-User Industries), and Geography (Asia-Pacific, North America, Europe, and More). The Market Forecasts are Provided in Terms of Volume (Tons)
Asia-Pacific dominated with 49.78% of 2025 shipments and is projected to retain leadership through 2031 at a 4.51% CAGR. National industrial policies encourage domestic sourcing of turbine blades, EV parts, and high-speed rail components, effectively locking in local suppliers across the glass fiber market. China invests in carbon-neutral furnaces powered by captive wind farms, an initiative that lowers embedded emissions and qualifies exports for low-carbon product categories.
North America's market is growing wth building-energy codes and EV platform launches offsetting slower oil-and-gas composite pipe demand. Expanded solar and wind tax credits amplify the replacement cycle for turbine blades, a trend that benefits mid-continent roving plants. Recycled content mandates in select U.S. states encourage the use of cullet, supporting scrap markets and reducing dependence on imported soda ash. Europe's outlook hinges on offshore wind build-outs in the North Sea and Baltic, but trade defense measures under investigation may reshape supply chains should tariffs on Asian rovings intensify. Glass fiber reinforced pressure vessels could see early adoption in green-hydrogen corridors linking the Gulf to Europe. Latin America's modest baseline is anchored by Brazilian wind parks and Mexico's automotive assembly plants, both of which are ramping post-pandemic. Regional producers may struggle with feedstock import costs; nonetheless, free-trade agreements and nearshoring initiatives draw investment aimed at shortening trans-Pacific freight legs.