![]() |
市場調查報告書
商品編碼
1850370
感測器融合:市場佔有率分析、行業趨勢、統計數據和成長預測(2025-2030 年)Sensor Fusion - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030) |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2025 年感測器融合市場規模將達到 87.5 億美元,到 2030 年將達到 182.2 億美元,年複合成長率為 15.8%。

成長的驅動力來自自動駕駛系統對可靠即時感知的需求、日益嚴格的安全法規以及固態雷射雷達等關鍵硬體成本的持續下降。亞太地區引領技術應用,主要得益於中國快速部署的自動駕駛汽車(AV)測試路線和工業自動化計劃。歐洲以安全為先的政策以及美國車聯網(V2X)基礎設施的投資也進一步推動了這一趨勢。雖然硬體仍然佔據收益的大部分,但隨著邊緣人工智慧將運算從雲端轉移到終端,降低延遲和資料隱私風險,軟體的價值佔有率正在不斷成長。儘管雷達和攝影機融合目前仍佔據主導地位,但包含LiDAR的三感測器套件正在迅速擴張,重塑著競爭格局。
歐洲新車安全評鑑協會 (Euro NCAP) 的 2025 年藍圖將多感測器感知提升為歐洲汽車製造商不可妥協的安全標準。乘用車平台必須協調攝影機、雷達以及最近加入的雷射雷達 (LiDAR) 系統,才能通過嚴格的行人偵測測試,包括白天和夜間測試。美國公路交通安全管理局 (NHTSA) 的政策協調加強了全球一致性,並使供應商能夠分攤跨區域的研發成本。像 Aptiv 這樣的頂級供應商正在積極回應,推出可透過 OTA 空中升級的 ADAS 系統,以降低延遲並提高在複雜城市環境中的物體偵測精度。監管的推動加速了軟體創新,因為演算法升級無需重新設計硬體即可帶來可衡量的安全改進。
汽車級固態雷射雷達的單價已較早商用水準下降約99.5%,使得三感測器融合系統在中國龐大的中型車市場成為可能。到2025年,國產配備LiDAR的車輛數量將年增一倍,達到94輛。北京將於2025年4月推出的L3級自動駕駛框架將進一步刺激市場需求,使汽車製造商能夠透過叫車和個人應用等項目收益。在中國雷射雷達銷售排名中,本土供應商合賽科技和樂視科技落後於華為,加劇了激烈的價格競爭,加速了全球成本的壓縮。
由於缺乏通用資料格式和檢驗框架,原始設備製造商 (OEM) 和供應商不得不設計客製化的整合流程,這推高了整合成本並阻礙了組件的兼容性。美國國家標準與技術研究院 (NIST) 呼籲制定標準化的參考資料集和評估標準,以加快跨供應商的相容性。數據碎片化也使汽車認證變得複雜,因為在一個平台上收集的證據可能無法轉移到另一個平台上,從而延遲了不同車型系列的功能發布。
到2024年,硬體市場規模將達到57億美元,佔總支出的65%,凸顯了攝影機、雷達、雷射雷達和慣性測量單元(IMU)在感知領域的關鍵作用。儘管隨著汽車整合超過30種感測器,硬體市場持續成長,但價格下降正在限制收益成長。相較之下,軟體市場到2030年將以18.9%的複合年成長率成長,因為空中下載(OTA)更新將開啟新的售後收益階段。
先進的融合演算法能夠提升現有硬體的效能,無需進行實體改動即可實現利潤豐厚的升級。 CEVA 的 FSP201 感測器中心 MCU 正是這一趨勢的典範。這款低功耗晶片可融合慣性、音訊和環境數據,應用於無人機和穿戴式設備,充分展現了最佳化程式碼將如何持續推動感測器融合市場在未來數年的發展。
到2024年,雷達攝影機系統將佔據感測器融合市場38%的佔有率,其優勢在於兼顧成本和應對惡劣天氣條件的能力。大多數L2 ADAS系統都依賴這種組合來實現主動式車距維持定速系統和自動煞車。然而,受固態雷射雷達價格下降的推動,預計到2030年,三感測器平台相關的感測器融合市場規模將以22.5%的複合年成長率快速成長。
整合式雷射雷達可提高深度精度和冗餘度,這對於L3及以上的自主運作至關重要。京瓷的相機和雷射雷達融合感測器將兩種成像模式整合於單一機殼中,從而降低視差並簡化校準要求。這種封裝效率對於空間和散熱預算緊張的成本敏感應用領域至關重要。
感測器融合市場按產品類型(硬體、軟體)、融合方法(雷達+攝影機融合、雷射雷達+攝影機融合等)、演算法類型(卡爾曼濾波(EKF、UKF)、貝氏網路等)、應用、車輛類型和地區進行細分。市場預測以美元計價。
亞太地區將佔據感測器融合市場最大佔有率,到2024年市場規模將達33億美元,複合年成長率達17.2%。中國50多個自動駕駛汽車測試區正在不斷擴張,同時政府也加強了工業機器人的補助。日本和韓國在微型感測器領域擁有豐富的技術,這些技術已融入全球供應鏈。北美地區的感測器融合市場規模雖然落後,但得益於矽谷豐富的AI人才儲備以及美國大力推進在高速公路沿線部署V2X無線技術(這是實現L4感知冗餘的先決條件),北美市場正從中受益。
歐洲的發展方向受嚴格的安全和資料隱私法規驅動。該地區的頂級供應商利用精密工程技術滿足歐洲新車安全評鑑協會(Euro NCAP)的多感測器要求,在功能安全指標方面始終領先於歐洲平台。在中東,國防現代化正在推動多感測器目標瞄準系統的發展。這些計劃通常會產生軍民兩用智慧財產權,這些智慧財產權隨後會應用於民用自動駕駛汽車。由於LiDAR(LiDAR)應用有限且資料基礎設施尚未成熟,非洲和南美洲的發展相對滯後,但一些智慧城市資金籌措正在試驗將感測器融合技術應用於交通管理和公共無人機。
從北京的自動駕駛汽車法令到布魯塞爾的人工智慧法,區域法律規範將決定感測器融合部署的速度和深度。習慣於跨洲認證流程的供應商正透過將認證工具鏈與其感知技術堆疊捆綁銷售,從而將監管差異轉化為業務收益。
The sensor fusion market size is estimated at USD 8.75 billion in 2025 and is set to reach USD 18.22 billion by 2030, expanding at a 15.8% CAGR.

Growth rests on the need for reliable, real-time perception in autonomous systems, tighter safety regulations, and steady cost declines in key hardware such as solid-state LiDAR. Asia-Pacific leads adoption on the back of China's rapid rollout of autonomous vehicle (AV) testing routes and industrial automation projects. Europe's safety-first policies and the United States' V2X infrastructure investments provide additional momentum. Hardware still dominates revenue, yet software is capturing a rising share of value as edge AI shifts compute from the cloud to the endpoint, trimming latency and data-privacy risk. Radar-camera fusion is currently the workhorse configuration, but three-sensor suites that add LiDAR are scaling fastest and reshaping competitive positioning as component prices fall.
Euro NCAP's 2025 roadmap elevates multi-sensor perception to a non-negotiable safety baseline for European automakers. Passenger-car platforms must harmonize cameras, radar, and increasingly LiDAR to pass demanding pedestrian detection tests in both daylight and darkness. Converging policies by NHTSA in the United States reinforce global alignment, enabling suppliers to amortize development across regions. Tier-1s such as Aptiv respond with over-the-air-upgradable ADAS stacks that lower latency and sharpen object detection in cluttered urban scenes. The regulatory push accelerates software innovation because algorithm upgrades deliver measurable safety gains without re-engineering hardware.
Unit prices for automotive-grade solid-state LiDAR have fallen roughly 99.5% from early commercial levels, making three-sensor fusion suites viable in China's sprawling mid-market segment. In 2025, 94 domestic vehicle models ship with LiDAR, double the prior year. Beijing's April 2025 L3 framework further catalyses demand, letting OEMs monetize higher autonomy through ride-hailing and personal-use programs. Local suppliers Hesai and RoboSense trail only Huawei in China's LiDAR revenue ranking, reinforcing a fiercely price-competitive environment that speeds global cost compression.
Without common data formats and validation frameworks, OEMs and suppliers design bespoke fusion pipelines, elevating integration cost and hindering component interchangeability. NIST calls for standardized reference datasets and evaluation metrics to accelerate cross-vendor compatibility. Fragmentation also complicates automotive homologation because evidence collected on one platform may not transfer to another, slowing feature rollouts across model lines.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
The sensor fusion market size for hardware stood at USD 5.7 billion in 2024, equal to 65% of total spending, underscoring the indispensable role of cameras, radar, LiDAR, and IMUs in perception. Hardware growth continues as vehicles exceed 30 discrete sensors, yet price erosion tempers revenue expansion. The software slice, by contrast, is scaling at an 18.9% CAGR to 2030 as OTA updates unlock new revenue stages post-sale, a shift already evident in Aptiv's Gen 6 ADAS rollouts.
Sophisticated fusion algorithms elevate installed hardware performance, yielding margin-rich upgrades without physical changes. CEVA's FSP201 sensor hub MCU illustrates the trend: a single low-power chip fuses inertial, audio, and environmental data for drones and wearables, signalling how optimized code will keep lifting the sensor fusion market for years to come.
Radar-camera systems controlled 38% of sensor fusion market share in 2024, balancing cost and robustness against poor weather. Most L2 ADAS stacks rely on this pairing for adaptive cruise control and automatic braking. The sensor fusion market size tied to three-sensor platforms is predicted to surge, however, on a 22.5% CAGR through 2030 as solid-state LiDAR prices tumble.
Integrating LiDAR enhances depth accuracy and redundancy, critical for L3 and above autonomy. Kyocera's camera-LiDAR fusion sensor collapses two modalities into one housing, reducing parallax while simplifying calibration demands. This packaging efficiency is vital for cost-sensitive segments where space and heat budgets are tight.
Sensor Fusion Market Sensor Fusion Market Segmented by Offering (Hardware, Software), Fusion Method (Radar + Camera Fusion, Lidar + Camera Fusion and More), Algorithm Type (Kalman Filter (EKF, UKF), Bayesian Networks and More), Application, Vehicle Type and Geography. The Market Forecasts are Provided in Terms of Value (USD).
Asia-Pacific controls the largest slice of the sensor fusion market, reaching USD 3.3 billion in 2024 and advancing on a 17.2% CAGR. China's 50-plus AV test zones, alongside national subsidies for industrial robotics, create scale. Japan and South Korea contribute miniaturized sensor know-how that feeds global supply chains. The sensor fusion market size in North America trails but benefits from Silicon Valley's deep AI talent pool and the U.S. push to embed V2X radios in highway corridors, a prerequisite for L4 perception redundancy.
Europe's direction is set by stringent safety and data-privacy rules. The region's Tier-1 suppliers leverage precision engineering to meet Euro NCAP's multi-sensor demands, keeping European platforms ahead on functional-safety metrics. Across the Middle East, defense modernization fuels multi-sensor targeting systems; these projects often birth dual-use IP that later migrates into civilian AVs. Africa and South America lag due to limited LiDAR penetration and less mature data infrastructure, but pockets of smart-city funding are piloting sensor fusion for traffic management and public-safety drones.
Collectively, regional regulatory frameworks, from Beijing's AV decree to Brussels' AI Act, dictate the pace and depth of sensor fusion rollouts. Suppliers accustomed to cross-continent homologation processes are turning regulatory variance into service revenue by offering certification toolchains bundled with their perception stacks.