封面
市場調查報告書
商品編碼
1850326

資料科學平台:市場佔有率分析、產業趨勢、統計數據和成長預測(2025-2030 年)

Data Science Platform - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 207 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預計到 2025 年,資料科學平台市場規模將達到 1,112.3 億美元,到 2030 年將成長至 2,756.7 億美元,複合年成長率為 21.43%。

數據科學平台-市場-IMG1

隨著企業將機器學習營運、資料工程和商業智慧工作流程整合到單一技術堆疊中,並滿足歐盟人工智慧法規及類似框架下更嚴格的管治規則,市場需求正在不斷成長。此外,邊緣到雲端架構的擴展(旨在處理非結構化物聯網和視訊串流)、對可擴展特徵儲存的需求以及雲端服務供應商部署高密度GPU實例,也推動了這一趨勢。北美憑藉著成熟的雲端基礎設施保持領先地位,而亞太地區對生成式人工智慧和資料中心容量的加速投資則鞏固了其作為快速成長地區的地位。隨著超大規模資料中心整合原生人工智慧工具,以及專業供應商透過開放格式資料共用、混合部署和特定領域加速器實現差異化競爭,市場競爭日益激烈。

全球資料科學平台市場趨勢與洞察

開放原始碼學習框架的普及將推動平台融合。

TensorFlow 和 PyTorch 已發展成為全端生態系統,能夠縮短模型原型製作時間並簡化分散式訓練,從而鼓勵企業從客製化技術堆疊轉向與框架無關、由供應商管理的平台。因此,中型企業無需增加工程開銷即可連接到統一的環境,加快價值實現速度。涉及 AI/ML 基礎設施的專利系列年增 45%,顯示平台供應商正利用持續創新來避免供應商鎖定並加強管治。

加強模型管治法規將推動託管平台的普及。

歐盟人工智慧法將於2024年8月生效,該法規定了風險管理和審核追蹤義務,並鼓勵採用內建合規儀表板、自動化文件和持續監控的承包平台。域外適用將迫使非歐盟公司採用類似功能來服務歐洲客戶,而高達全球營業額7%的罰款將增加違規成本。法國300億歐元(330億美元)的人工智慧基金等政府舉措正在推動對合規基礎設施的需求。

資料居住障礙阻礙了歐盟公共部門的多區域部署

GDPR 和主權規則迫使公共機構在國界內進行處理,使多邊部署變得複雜:歐盟在 ICT 投資方面比美國落後 1.36 兆美元,43% 的跨境中小企業受到位置限制,只能選擇提供本地託管服務的供應商。

細分市場分析

到2024年,平台將佔據資料科學平台市場72%的佔有率,這反映出企業對涵蓋資料攝取到模型監控的整合工具鏈的需求。然而,隨著企業購買諮詢、客製化和託管服務來運行複雜的工作負載,服務市場正以24.3%的複合年成長率快速成長。供應商的收益模式正日益融合許可和專業契約,以降低客戶流失並確保合規性。

服務需求的成長動能源自於MLOps領域的技能缺口:缺乏實施經驗的公司正在將設計、自動化和監控工作外包。因此,預計到2030年,資料科學平台市場中服務部分的佔有率將穩步成長,這凸顯了該生態系統正從純粹的軟體銷售轉向基於結果的夥伴關係。

2024年,受彈性GPU叢集和AI最佳化儲存需求的推動,雲端部署將佔據資料科學平台市場佔有率的78%。供應商報告稱,從2023年起,其基礎設施收益成長的一半將直接歸功於生成式AI工作負載。

雲端運算未來複合年成長率將達到 21.9%,仍是資料科學平台市場的主要驅動力。雖然在監管嚴格的行業中,本地部署和混合部署仍然存在,但這些用戶擴大將開發和測試階段轉移到雲端,同時將生產流程保留在主權區域內。邊緣節點現在構成了一個支援層,能夠在保持集中式主機編配的同時,實現對延遲要求極高的推理。

資料科學平台市場按產品類型(平台、服務)、配置(本地部署、雲端部署)、公司規模(中小企業、大型企業)、最終用戶產業(IT與通訊、銀行、金融服務和保險、零售與電子商務、製造業、其他)以及地區(北美、歐洲、其他)進行細分。市場預測以美元計價。

區域分析

北美將在 2024 年維持 40% 的資料科學平台市場佔有率,這得益於 2025 年第一季三大超大規模雲端超大規模資料中心業者684 億美元的雲端服務收入。創投、專利主導和豐富的合作夥伴生態系統正在推動高級應用,但不斷上漲的資金籌措設施成本將迫使提供者投入超過 1000 億美元的創紀錄資本預算來增加容量。

亞太地區是成長最快的地區,年複合成長率高達25.7%,主要得益於中國在人工智慧領域的投資以及印度資料中心規模翻倍。該地區的資料中心運作超過12GW,為持續擴張提供了堅實的基礎。澳洲的《數位經濟戰略》和中國的《數據因素三年行動計畫》等政府計畫正在推動政策層面支持平台應用。

歐洲正處於監管的十字路口。歐盟人工智慧立法將刺激平台需求,但高達1.36兆美元的ICT投資缺口,以及對主權的迫切需求,將迫使服務提供者建立本地託管和加密方案。市場分散將推高成本,但德國的工業4.0計畫和法國的人工智慧獎勵策略(300億歐元/330億美元)等舉措將獎勵合規且自主的雲端解決方案的發展。預計到2027年,全球軟雲投資將超過2,500億美元。

其他福利:

  • Excel格式的市場預測(ME)表
  • 3個月的分析師支持

目錄

第1章 引言

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章 市場情勢

  • 市場概覽
  • 市場促進因素
    • 開放原始碼學習框架的普及將推動平台融合。
    • 更嚴格的模型管治法規(例如歐盟人工智慧法)將推動託管平台的普及。
    • 採用邊緣到雲端的資料架構,在製造業實現混合式資料服務平台
    • 非結構化物聯網和視訊資料的爆炸性成長需要可擴展的特徵存儲,這正在推動市場發展。
  • 市場限制
    • 資料駐留障礙阻礙了歐盟公共部門的多區域擴張
    • 機器學習維運工程師短缺阻礙了複雜部署
    • 雲端價格上漲導致即時訓練工作負載的預算被推遲。
    • 能源和公共產業領域的傳統資料孤島會延遲平台投資報酬率
  • 價值鏈分析
  • 技術展望
  • 波特五力分析
    • 供應商的議價能力
    • 消費者議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭
  • 對宏觀經濟趨勢的市場評估
  • 主要用例
  • 生態系分析
  • 定價及定價模式
  • 資料科學平台的主要功能(人工智慧/機器學習、分析、視覺化、探索、建模)

第5章 市場規模及成長預測(數值)

  • 報價
    • 平台
    • 服務
  • 透過部署
    • 本地部署
  • 按公司規模
    • 小型企業
    • 主要企業
  • 按最終用戶產業
    • 資訊科技和通訊
    • BFSI
    • 零售與電子商務
    • 製造業
    • 能源和公共產業
    • 醫療保健和生命科學
    • 政府和國防部
    • 其他終端用戶產業
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
      • 墨西哥
    • 歐洲
      • 英國
      • 德國
      • 法國
      • 義大利
      • 西班牙
      • 其他歐洲地區
    • 亞太地區
      • 中國
      • 印度
      • 日本
      • 韓國
      • 澳洲和紐西蘭
      • 其他亞太地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美
    • 中東和非洲
      • 中東
      • GCC
      • 阿拉伯聯合大公國
      • 沙烏地阿拉伯
      • 卡達
      • 海灣合作理事會其他成員國
      • 土耳其
      • 其他中東地區
      • 非洲
      • 南非
      • 奈及利亞
      • 其他非洲國家

第6章 競爭情勢

  • 市場集中度
  • 市佔率分析
  • Vendor Ranking by Region
  • 公司簡介
    • IBM Corporation
    • Google LLC(Alphabet Inc.)
    • Microsoft Corporation
    • Alteryx Inc.
    • SAS Institute Inc.
    • Databricks Inc.
    • Snowflake Inc.
    • Amazon Web Services Inc.
    • The MathWorks Inc.
    • RapidMiner Inc.
    • DataRobot Inc.
    • H2O.ai
    • TIBCO Software Inc.
    • KNIME GmbH
    • Domino Data Lab Inc.
    • Oracle Corporation
    • SAP SE
    • Cloudera Inc.
    • Qlik Tech International
    • Altair Engineering Inc.

第7章 市場機會與未來展望

簡介目錄
Product Code: 62382

The data science platform market size is valued at USD 111.23 billion in 2025 and is forecast to climb to USD 275.67 billion in 2030, advancing at a 21.43% CAGR.

Data Science Platform - Market - IMG1

Demand escalates as enterprises consolidate machine-learning operations, data engineering, and business-intelligence workflows on a single stack that satisfies tighter governance rules under the EU AI Act and similar frameworks. Momentum also stems from growing edge-to-cloud fabrics that accommodate unstructured IoT and video streams, the need for scalable feature stores, and cloud providers' rollout of high-density GPU instances. North American leadership remains anchored in mature cloud infrastructure, while Asia-Pacific's accelerating investment in generative AI and data-center capacity underpins its status as the fastest-growing region. Competitive intensity is rising as hyperscalers embed native AI tooling and specialist vendors differentiate through open-format data sharing, hybrid deployment, and domain-specific accelerators.

Global Data Science Platform Market Trends and Insights

Proliferation of Open-Source ML Frameworks Catalyzing Platform Convergence

TensorFlow and PyTorch have evolved into full-stack ecosystems that cut model-prototyping time and simplify distributed training, encouraging enterprises to shift from bespoke stacks to vendor-managed platforms that remain framework agnostic. The resulting convergence allows mid-market firms to plug into unified environments without heavy engineering overhead, accelerating time-to-value. Patent families addressing AI/ML infrastructure climbed 45% year-over-year, signaling continued innovation that platform providers harness to avoid vendor lock-in and bolster governance.

Stricter Model-Governance Regulations Triggering Managed-Platform Uptake

The EU AI Act, effective August 2024, imposes risk-management and audit-trail duties that favor turnkey platforms offering built-in compliance dashboards, automated documentation, and continuous monitoring. Extraterritorial reach compels non-EU firms to adopt similar capabilities to serve European customers, while penalties up to 7% of global turnover sharpen the cost of non-compliance. Government initiatives such as France's EUR 30 billion (USD 33 billion) AI fund strengthen demand for compliant infrastructure.

Data-Residency Barriers Hampering Multi-Region Roll-outs in EU Public Sector

GDPR and sovereignty rules force public entities to confine processing within national borders, complicating multinational deployments. The EU trails the US by USD 1.36 trillion in ICT investment, and 43% of cross-border SMEs struggle with location mandates that narrow vendor options to providers offering in-region hosting.

Other drivers and restraints analyzed in the detailed report include:

  1. Edge-to-Cloud Data-Fabric Adoption Enabling Hybrid Platforms in Manufacturing
  2. Explosion of Unstructured IoT and Video Data Requiring Scalable Feature Stores
  3. Shortage of MLOps Engineers Undermining Complex Deployments

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Platforms contributed 72% of the data science platform market in 2024, reflecting enterprise appetite for integrated toolchains that cover ingestion to model monitoring. Yet services are expanding at a 24.3% CAGR as firms purchase advisory, customization, and managed capabilities to operationalize complex workloads. Vendor revenue models increasingly blend licenses with professional engagements to curb customer churn and assure compliance readiness.

Service momentum traces back to the MLOps skills gap: enterprises lacking deployment expertise outsource design, automation, and monitoring. As a result, the services slice of the data science platform market size is projected to widen steadily through 2030, reinforcing the ecosystem's shift from pure software sales to outcome-based partnerships.

Cloud deployments accounted for 78% of the data science platform market share in 2024, underpinned by the need for elastic GPU clusters and AI-optimized storage. Providers report that half of incremental infrastructure revenue since 2023 stems directly from generative AI workloads.

With a 21.9% CAGR ahead, cloud remains the primary engine of the data science platform market. On-premise and hybrid implementations persist in heavily regulated verticals, but even those users increasingly offload dev-test stages to the cloud while keeping production pipelines within sovereign zones. Edge nodes now form an adjunct layer, enabling latency-critical inference yet remaining orchestrated from centralized consoles.

Data Science Platform Market is Segmented by Offering (Platform, Services), Deployment (On-Premise, Cloud), Enterprise Size (Small and Medium Enterprises, Large Enterprises), End-User Industry (IT and Telecom, BFSI, Retail and E-Commerce, Manufacturing, and More), and Geography (North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America retains 40% of the data science platform market share in 2024, bolstered by USD 68.4 billion in Q1 2025 cloud-service revenue from the top three hyperscalers. Venture funding, patent leadership, and a dense partner ecosystem nurture advanced deployments, though rising infrastructure costs push providers to bankroll record capital budgets exceeding USD 100 billion for additional capacity.

Asia-Pacific is the fastest expanding arena, growing at 25.7% CAGR on the back of China's generative-AI outlays and India's doubling data-center footprint. Regional data-center power surpassed 12 GW operational, providing the backbone for sustained expansion. Government programs such as Australia's Digital Economy Strategy and China's Three-Year Data Factor Action Plan create policy pull that underwrites platform adoption.

Europe sits at a regulatory crossroads: the EU AI Act fuels platform demand, yet a USD 1.36 trillion ICT investment gap plus sovereignty imperatives compel providers to build local hosting and encryption. Fragmented markets raise costs, but initiatives such as Germany's Industry 4.0 and France's AI stimulus (EUR 30 billion / USD 33 billion) incentivize compliant, sovereign-cloud solutions. Global sovereign-cloud spending is forecast to cross USD 250 billion by 2027.

  1. IBM Corporation
  2. Google LLC (Alphabet Inc.)
  3. Microsoft Corporation
  4. Alteryx Inc.
  5. SAS Institute Inc.
  6. Databricks Inc.
  7. Snowflake Inc.
  8. Amazon Web Services Inc.
  9. The MathWorks Inc.
  10. RapidMiner Inc.
  11. DataRobot Inc.
  12. H2O.ai
  13. TIBCO Software Inc.
  14. KNIME GmbH
  15. Domino Data Lab Inc.
  16. Oracle Corporation
  17. SAP SE
  18. Cloudera Inc.
  19. Qlik Tech International
  20. Altair Engineering Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Proliferation of Open-Source ML Frameworks Catalyzing Platform Convergence
    • 4.2.2 Stricter Model-Governance Regulations (EU AI Act et al.) Triggering Managed-Platform Uptake
    • 4.2.3 Edge-to-Cloud Data-Fabric Adoption Enabling Hybrid DS Platforms in Manufacturing)
    • 4.2.4 Explosion of Unstructured IoT and Video Data Requiring Scalable Feature Stores Drives the Market
  • 4.3 Market Restraints
    • 4.3.1 Data-Residency Barriers Hampering Multi-Region Roll-outs in Public Sector EU
    • 4.3.2 Shortage of ML-Ops Engineers Undermining Complex Deployments
    • 4.3.3 Escalating Cloud Bills Creating Budget Pushback for Real-Time Training Workloads
    • 4.3.4 Legacy Data Silos in Energy and Utilities Delaying Platform ROI
  • 4.4 Value Chain Analysis
  • 4.5 Technological Outlook
  • 4.6 Porter's Five Forces Analysis
    • 4.6.1 Bargaining Power of Suppliers
    • 4.6.2 Bargaining Power of Consumers
    • 4.6.3 Threat of New Entrants
    • 4.6.4 Threat of Substitutes
    • 4.6.5 Intensity of Competitive Rivalry
  • 4.7 Assessment of Macro Economic Trends on the Market
  • 4.8 Key Use Cases
  • 4.9 Ecosystem Analysis
  • 4.10 Pricing and Pricing Models
  • 4.11 Key Capabilities of Data Science Platforms (AI/ML, Analytics, Visualization, Exploration, Modelling)

5 MARKET SIZE AND GROWTH FORECASTS (VALUES)

  • 5.1 By Offering
    • 5.1.1 Platform
    • 5.1.2 Services
  • 5.2 By Deployment
    • 5.2.1 On-Premise
    • 5.2.2 Cloud
  • 5.3 By Enterprise Size
    • 5.3.1 Small and Medium Enterprises
    • 5.3.2 Large Enterprises
  • 5.4 By End-user Industry
    • 5.4.1 IT and Telecom
    • 5.4.2 BFSI
    • 5.4.3 Retail and E-commerce
    • 5.4.4 Manufacturing
    • 5.4.5 Energy and Utilities
    • 5.4.6 Healthcare and Life Sciences
    • 5.4.7 Government and Defense
    • 5.4.8 Other End-user Industries
  • 5.5 By Geography
    • 5.5.1 North America
      • 5.5.1.1 United States
      • 5.5.1.2 Canada
      • 5.5.1.3 Mexico
    • 5.5.2 Europe
      • 5.5.2.1 United Kingdom
      • 5.5.2.2 Germany
      • 5.5.2.3 France
      • 5.5.2.4 Italy
      • 5.5.2.5 Spain
      • 5.5.2.6 Rest of Europe
    • 5.5.3 Asia-Pacific
      • 5.5.3.1 China
      • 5.5.3.2 India
      • 5.5.3.3 Japan
      • 5.5.3.4 South Korea
      • 5.5.3.5 Australia and New Zealand
      • 5.5.3.6 Rest of Asia-Pacific
    • 5.5.4 South America
      • 5.5.4.1 Brazil
      • 5.5.4.2 Argentina
      • 5.5.4.3 Rest of South America
    • 5.5.5 Middle East and Africa
      • 5.5.5.1 Middle East
      • 5.5.5.1.1 GCC
      • 5.5.5.1.1.1 United Arab Emirates
      • 5.5.5.1.1.2 Saudi Arabia
      • 5.5.5.1.1.3 Qatar
      • 5.5.5.1.1.4 Rest of GCC
      • 5.5.5.1.2 Turkey
      • 5.5.5.1.3 Rest of Middle East
      • 5.5.5.2 Africa
      • 5.5.5.2.1 South Africa
      • 5.5.5.2.2 Nigeria
      • 5.5.5.2.3 Rest of Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Market Share Analysis
  • 6.3 Vendor Ranking by Region
  • 6.4 Company Profiles (includes Global Level Overview, Market Level Overview, Core Segments, Financials, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
    • 6.4.1 IBM Corporation
    • 6.4.2 Google LLC (Alphabet Inc.)
    • 6.4.3 Microsoft Corporation
    • 6.4.4 Alteryx Inc.
    • 6.4.5 SAS Institute Inc.
    • 6.4.6 Databricks Inc.
    • 6.4.7 Snowflake Inc.
    • 6.4.8 Amazon Web Services Inc.
    • 6.4.9 The MathWorks Inc.
    • 6.4.10 RapidMiner Inc.
    • 6.4.11 DataRobot Inc.
    • 6.4.12 H2O.ai
    • 6.4.13 TIBCO Software Inc.
    • 6.4.14 KNIME GmbH
    • 6.4.15 Domino Data Lab Inc.
    • 6.4.16 Oracle Corporation
    • 6.4.17 SAP SE
    • 6.4.18 Cloudera Inc.
    • 6.4.19 Qlik Tech International
    • 6.4.20 Altair Engineering Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-Need Assessment