封面
市場調查報告書
商品編碼
1849959

汽車感測器:市場佔有率分析、行業趨勢、統計數據和成長預測(2025-2030 年)

Automotive Sensors - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 150 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

預計汽車感測器市場規模到 2025 年將達到 288.3 億美元,到 2030 年將達到 386.7 億美元,複合年成長率為 6.05%。

汽車感光元件市場-IMG1

市場成長的動力源自於ADAS(高階駕駛輔助系統)的加速部署、新增感測點的電氣化指令,以及半導體產業大規模提供具成本效益電子機械系統 (MEMS) 的能力。高價位的感知技術正在取代傳統組件,尤其是在推進系統中。降低排放氣體和防撞性能的監管壓力正在穩定需求,而MEMS平均售價 (ASP) 的下降正在降低汽車各細分市場的採用門檻。因此,汽車感測器市場正在從基本的測量功能發展到能夠在本地處理數據的智慧互聯邊緣設備。

全球汽車感測器市場趨勢與洞察

ADAS 和自動駕駛感應器的普及

在未來的安全評估中,自動緊急煞車、車道維持輔助和行人偵測將推動每輛車感知器數量的增加。半導體發展藍圖預測,到2027年,ADAS將佔汽車晶片需求的近三分之一,屆時L2+等級功能將成為常態。中國品牌正透過以最低成本捆綁ADAS套件來加劇價格競爭,迫使全球供應商在不影響性能的情況下降低系統價格。雷達、LiDAR和攝影機融合的偵測精度接近99.97%,產生Terabyte的資料負載,這些資料負載擴大在感測器邊緣進行處理,以減少延遲。因此,邊緣AI功能將成為汽車感測器市場的下一個差異化槓桿。

排放和安全法規推動壓力和氣體感測器

美國環保署的2027-2032法規要求減少50%的溫室氣體排放,因此需要即時監測廢氣後處理效率。並行的氫動力汽車法規(FMVSS 307/308)對新燃油系統增加了壓力和洩漏檢測要求。歐7擴大了顆粒物和氮氧化物法規,刺激了對精密氣體感測器的需求;英國的Progressive Safe系統為重型卡車引入了盲點偵測功能,以保護弱勢道路使用者。重疊的法規縮短了設計窗口,確保了對高精度壓力和氣體感測器的多年需求。

大眾市場汽車的感測器成本壓力

2023年至2029年間,汽車的平均半導體含量將快速成長,這將擠壓價格敏感型細分市場的原始設備製造商利潤。低成本的中國電動車品牌已經免費提供全套ADAS套件,這給現有供應商帶來了更大的價格壓力。因此,一級感測器製造商必須整合功能、縮小封裝尺寸,並採用系統晶片設計,才能在不影響盈利的情況下創造價值。

細分分析

慣性感測器佔2024年收入的28.13%,因為加速計和陀螺儀為電子穩定控制、導航和ADAS堆疊提供動力。更高解析度的慣性測量單元(IMU)現在正被納入區域架構,供應商正在整合符合AEC-Q100 1級標準的自我診斷功能,以減少佈線和整體系統重量。磁感測器用於電動車牽引馬達控制,而氣體感測器則用於處理排放和座艙空氣調節。壓力和溫度感測器的應用範圍正在從內燃機擴展到電池熱失控檢測。

加速系統級整合:整合加速計、陀螺儀和磁力計功能的封裝可減少SKU數量,並簡化OEM廠商的認證週期。隨著MEMS平均售價的下降,慣性裝置對於大眾市場車輛而言已具備經濟可行性,而邊緣AI模組也正在片上出現,用於在本地預過濾運動數據。每增加一層自主性,都需要更精細的運動識別,到2030年,這個基礎類別的複合年成長率將達到6.47%。

動力傳動系統總成感測在燃油計量、點火、渦輪增壓和後處理控制中發揮著至關重要的作用,到2024年將佔據總營收的40.55%。然而,由於純電動車架構淘汰了多項傳統測量技術,其長期成長將放緩。相較之下,遠端資訊處理感測器的複合年成長率將達到8.86%,這是最快的,因為基於使用情況的保險和車輛最佳化系統利用GPS、加速計和OBD資料流,可將碰撞頻率降低高達43%。

隨著舒適性功能的日益普及,車身電子將保持中等個位數成長,車輛安全也將從警報器發展到整合式入侵偵測雷達。軟體定義汽車的價值將從機械驅動轉向數據驅動,原始設備製造商將透過預測性維護訂閱服務,擴大將感測器有效載荷轉化為收益。這種調整將緩解純動力傳動系統需求的下降,並將收益多元化,轉向互聯服務。

區域分析

預計亞太地區將在2024年以42.30%的營收佔有率領先,並在2030年之前以9.10%的最快複合年成長率成長。中國目前已生產全球約62%的電動車和77%的電池,為感測器提供了龐大的國內市場,並保證了規模優勢。比亞迪等產業龍頭企業生產的半導體(包括攝影機和電磁設備)高達70%來自本土,從而增強了其本地供應環路。日本正在利用數十年的感測器技術,同時透過政府激勵措施吸引新的晶圓產能,而台灣的代工廠對於尖端MEMS生產仍然至關重要。政府補貼和積極的電氣化目標將促進該地區的擴張。

在嚴格的安全法規和晶片製造在地化資金的推動下,北美正專注於高階ADAS。 《晶片法案》(CHIPS Act) 的資本津貼和稅收優惠減少了對海外代工廠的依賴,並支持了具有韌性的供應基礎。美國國家公路交通安全管理局 (NHTSA) 將 ADAS 指標納入其新車評估計劃,確保 2026 年及以後車型的關鍵感測器基準納入標準,從而支持各類車型的穩定需求。

在歐洲,對排放合規性和城市安全法規的重視,正在推動乘用車和重型卡車感測器密度的提高。歐7法規和不斷升級的安全系統要求為氣體偵測和盲點解決方案創造了新的機會。同時,來自中國進口電動車的成本競爭迫使歐洲供應商在不犧牲精度的情況下加快降低成本的步伐,這為汽車感測器市場創造了一個充滿挑戰但又充滿創新的環境。

其他福利:

  • Excel 格式的市場預測 (ME) 表
  • 3個月的分析師支持

目錄

第1章 引言

  • 研究假設和市場定義
  • 調查範圍

第2章調查方法

第3章執行摘要

第4章 市場狀況

  • 市場概況
  • 市場促進因素
    • ADAS和自動駕駛感應器的普及
    • 排放氣體和安全措施要求安裝驅動壓力/氣體感知器
    • 電動汽車熱電池感測器的繁榮
    • MEMS 平均售價下降,使大規模應用成為可能
    • 支援OTA的自我診斷智慧感測器
    • 基於使用情況的保險遠端資訊處理需求
  • 市場限制
    • 量產車輛的感知器成本壓力
    • 半導體晶圓供應波動
    • ADAS 責任問題推遲了新的感測器規範
    • 感測器資料收益的資料隱私限制
  • 價值/供應鏈分析
  • 監管格局
  • 技術展望
  • 波特五力模型
    • 新進入者的威脅
    • 買方的議價能力
    • 供應商的議價能力
    • 替代品的威脅
    • 競爭對手之間的競爭

第5章市場規模及成長預測

  • 按類型
    • 溫度感測器
    • 壓力感測器
    • 速度感測器
    • 液位/位置感知器
    • 磁感測器
    • 氣體感測器
    • 慣性感測器
  • 按用途
    • 動力傳動系統
    • 車身電子
    • 車輛安全系統
    • 遠端資訊處理
  • 按車輛類型
    • 搭乘用車
    • 商用車
  • 推進技術
    • 內燃機汽車
    • 純電動車(BEV)
    • 插電式混合動力汽車(PHEV)
    • 燃料電池電動車(FCEV)
  • 按銷售管道
    • OEM 安裝的感測器
    • 售後市場
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
      • 其他北美地區
    • 南美洲
      • 巴西
      • 阿根廷
      • 南美洲其他地區
    • 歐洲
      • 德國
      • 英國
      • 法國
      • 俄羅斯
      • 其他歐洲地區
    • 亞太地區
      • 中國
      • 日本
      • 印度
      • 韓國
      • 其他亞太地區
    • 中東和非洲
      • 土耳其
      • GCC
      • 南非
      • 其他中東和非洲地區

第6章 競爭態勢

  • 市場集中度
  • 策略趨勢
  • 市佔率分析
  • 公司簡介
    • Robert Bosch GmbH
    • DENSO Corporation
    • Continental AG
    • Infineon Technologies AG
    • NXP Semiconductors NV
    • Sensata Technologies PLC
    • Texas Instruments Inc.
    • Analog Devices Inc.
    • Aptiv PLC
    • ST Microelectronics NV
    • Valeo SA
    • Honeywell International Inc.
    • Allegro MicroSystems LLC
    • Murata Manufacturing Co.
    • CTS Corporation
    • Littelfuse Inc.
    • ON Semiconductor Corp.
    • TE Connectivity Ltd.
    • Autoliv Inc.
    • Melexis NV

第7章 市場機會與未來展望

簡介目錄
Product Code: 50055

The automotive sensors market reached USD 28.83 billion in 2025 and is forecast to climb to USD 38.67 billion by 2030 on a 6.05% CAGR.

Automotive Sensors - Market - IMG1

The market's growth is anchored in accelerating deployments of advanced driver-assistance systems (ADAS), electrification mandates that add new sensing points, and the semiconductor industry's ability to deliver cost-effective micro-electromechanical systems (MEMS) at scale. Momentum also reflects the shift from mechanical to electronic sensing, particularly in propulsion systems, where premium-priced perception technologies replace legacy components. Regulatory pressure for emissions reduction and crash-avoidance performance keeps demand steady, while falling average selling prices (ASPs) for MEMS lower adoption barriers across vehicle segments. The automotive sensors market, therefore, evolves from basic measurement functions toward intelligent, connected edge devices able to process data locally.

Global Automotive Sensors Market Trends and Insights

ADAS and autonomous-driving sensor proliferation

Automatic emergency braking, lane-keeping assist, and pedestrian detection in upcoming safety ratings drive higher sensor counts per vehicle. Semiconductor roadmaps anticipate that ADAS will capture nearly one-third of automotive chip demand by 2027 as Level 2+ functions become standard. Chinese brands intensify price competition by bundling full ADAS suites at minimal cost, compelling global suppliers to slash system prices without eroding performance. Radar, LiDAR, and camera fusion are about to reach 99.97% detection accuracy, yet create terabyte-scale data loads that are increasingly processed at the sensor edge to cut latency. Edge AI capability, therefore, becomes the next differentiation lever in the automotive sensors market.

Emission and safety mandates driving pressure / gas sensors

The U.S. Environmental Protection Agency's 2027-2032 rules require a 50% cut in greenhouse-gas output, forcing real-time sensing of exhaust after-treatment efficiency. Parallel hydrogen-vehicle regulations (FMVSS 307/308) add pressure and leak-detection requirements for new fuel systems. Euro 7 extends particulate and NOx limits, spurring precision gas-sensor demand, while the U.K. Progressive Safe System introduces blind-spot sensing on heavy trucks to protect vulnerable road users. The overlapping mandates tighten design windows and secure multi-year demand for high-accuracy pressure and gas sensors.

Sensor cost pressure on mass-market vehicles

Between 2023 and 2029, vehicles are set to see a swift uptick in their average semiconductor content, compressing OEM margins in price-sensitive segments. Low-cost Chinese EV brands already offer full ADAS suites at no extra charge, escalating pricing pressure on established suppliers. Tier-one sensor makers must, therefore, integrate functions, shrink packages, and adopt system-on-chip designs to deliver value without eroding profitability.

Other drivers and restraints analyzed in the detailed report include:

  1. EV thermal-battery sensing boom
  2. Falling MEMS ASP enabling mass adoption
  3. Semiconductor wafer-supply volatility

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Inertial sensors generated 28.13% of 2024 revenue because accelerometers and gyroscopes anchor electronic stability control, navigation, and ADAS stacks. Higher-resolution inertial measurement units (IMUs) are now embedded inside zonal architectures, and suppliers integrate self-diagnostics that meet AEC-Q100 grade 1 to cut cabling and lower overall system weight. Magnetic sensors gain traction in EV traction-motor control, while gas sensors rebound on emissions and cabin-air mandates. Pressure and temperature sensors expand beyond combustion engines into battery thermal-runaway detection.

System-level integration is accelerating: combo packages merge accelerometer, gyroscope, and magnetometer functions, reducing OEM SKU counts and simplifying qualification cycles. Falling MEMS ASPs keep inertial devices economically feasible for mass-market cars, and edge AI blocks are starting to appear on-die to pre-filter motion data locally. The net result is a sustainable 6.47% CAGR through 2030 for this cornerstone category, as every additional autonomy layer requires finer motion awareness.

Powertrain sensing delivered 40.55% of 2024 revenue, through indispensable roles in fuel metering, ignition, turbo boost, and after-treatment control. Yet battery-electric architectures omit several legacy measurements, softening long-range growth. In contrast, telematics sensors post the quickest 8.86% CAGR as usage-based insurance and fleet optimization adopt GPS, accelerometer, and OBD data streams to lower crash frequency by up to 43%.

Body electronics maintain mid-single-digit expansion as comfort functions proliferate, and vehicle security evolves from alarms to integrated intrusion-detection radar. Software-defined vehicles shift value from mechanical actuation to data, and OEMs increasingly monetize sensor payloads via predictive-maintenance subscriptions. This realignment cushions the tapering of pure powertrain demand and diversifies revenue toward connected services.

The Automotive Sensors Market is Segmented by Vehicle Type (Passenger Cars, and Commercial Vehicles), Type (Temperature Sensors, Pressure Sensors, and More), Application (Powertrain, Body Electronics, and More), Propulsion Technology (ICE Vehicles, Battery-Electric Vehicles (BEV), and More), Sales Channel (OEM-Fitted Sensors, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

Asia-Pacific led with 42.30% revenue share in 2024 and is expected to post the quickest 9.10% CAGR to 2030. China already manufactures around 62% of global EVs and 77% of batteries, providing a vast indigenous market for sensors and guaranteeing scale advantages. Vertically integrated champions such as BYD build up to 70% of semiconductor content in-house, including camera and electromagnetic devices, tightening local supply loops. Japan leverages decades of sensor know-how while attracting new wafer capacity via government incentives, and Taiwan's foundries remain pivotal to leading-edge MEMS production. Government subsidies and aggressive electrification targets reinforce the region's expansion.

North America maintains a premium ADAS focus, aided by robust safety regulations and funding to localize chip fabrication. The CHIPS Act's capital grants plus tax incentives reduce reliance on overseas foundries, supporting a resilient supply base. NHTSA's added ADAS metrics under the New Car Assessment Program guarantee baseline installation of critical sensors from model-year 2026 onwards, underpinning steady demand across vehicle classes.

Europe emphasizes emissions compliance and urban-safety mandates that raise sensor density in both passenger cars and heavy trucks. Euro 7 rules and Progressive Safe System requirements trigger new opportunities for gas detectors and blind-spot solutions. At the same time, cost competition from imported Chinese EVs forces European suppliers to accelerate cost-down initiatives without sacrificing precision, creating a challenging but innovation-rich environment for the automotive sensors market.

  1. Robert Bosch GmbH
  2. DENSO Corporation
  3. Continental AG
  4. Infineon Technologies AG
  5. NXP Semiconductors NV
  6. Sensata Technologies PLC
  7. Texas Instruments Inc.
  8. Analog Devices Inc.
  9. Aptiv PLC
  10. ST Microelectronics NV
  11. Valeo SA
  12. Honeywell International Inc.
  13. Allegro MicroSystems LLC
  14. Murata Manufacturing Co.
  15. CTS Corporation
  16. Littelfuse Inc.
  17. ON Semiconductor Corp.
  18. TE Connectivity Ltd.
  19. Autoliv Inc.
  20. Melexis NV

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 Introduction

  • 1.1 Study Assumptions & Market Definition
  • 1.2 Scope of the Study

2 Research Methodology

3 Executive Summary

4 Market Landscape

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 ADAS and autonomous-driving sensor proliferation
    • 4.2.2 Emission and safety mandates driving pressure / gas sensors
    • 4.2.3 EV thermal-battery sensing boom
    • 4.2.4 Falling MEMS ASP enabling mass adoption
    • 4.2.5 OTA-ready self-diagnostic smart sensors
    • 4.2.6 Usage-based-insurance telematics demand
  • 4.3 Market Restraints
    • 4.3.1 Sensor cost pressure on mass-market vehicles
    • 4.3.2 Semiconductor wafer-supply volatility
    • 4.3.3 ADAS liability delaying new sensor specs
    • 4.3.4 Data-privacy limits to sensor-data monetisation
  • 4.4 Value / Supply-Chain Analysis
  • 4.5 Regulatory Landscape
  • 4.6 Technological Outlook
  • 4.7 Porter's Five Forces
    • 4.7.1 Threat of New Entrants
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Bargaining Power of Suppliers
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Competitive Rivalry

5 Market Size and Growth Forecasts (Value, USD)

  • 5.1 By Type
    • 5.1.1 Temperature Sensors
    • 5.1.2 Pressure Sensors
    • 5.1.3 Speed Sensors
    • 5.1.4 Level / Position Sensors
    • 5.1.5 Magnetic Sensors
    • 5.1.6 Gas Sensors
    • 5.1.7 Inertial Sensors
  • 5.2 By Application
    • 5.2.1 Powertrain
    • 5.2.2 Body Electronics
    • 5.2.3 Vehicle Security Systems
    • 5.2.4 Telematics
  • 5.3 By Vehicle Type
    • 5.3.1 Passenger Cars
    • 5.3.2 Commercial Vehicles
  • 5.4 By Propulsion Technology
    • 5.4.1 ICE Vehicles
    • 5.4.2 Battery-Electric Vehicles (BEV)
    • 5.4.3 Plug-in Hybrid Vehicles (PHEV)
    • 5.4.4 Fuel-cell Electric Vehicles (FCEV)
  • 5.5 By Sales Channel
    • 5.5.1 OEM-fitted Sensors
    • 5.5.2 Aftermarket
  • 5.6 By Geography
    • 5.6.1 North America
      • 5.6.1.1 United States
      • 5.6.1.2 Canada
      • 5.6.1.3 Rest of North America
    • 5.6.2 South America
      • 5.6.2.1 Brazil
      • 5.6.2.2 Argentina
      • 5.6.2.3 Rest of South America
    • 5.6.3 Europe
      • 5.6.3.1 Germany
      • 5.6.3.2 United Kingdom
      • 5.6.3.3 France
      • 5.6.3.4 Russia
      • 5.6.3.5 Rest of Europe
    • 5.6.4 Asia-Pacific
      • 5.6.4.1 China
      • 5.6.4.2 Japan
      • 5.6.4.3 India
      • 5.6.4.4 South Korea
      • 5.6.4.5 Rest of Asia-Pacific
    • 5.6.5 Middle East and Africa
      • 5.6.5.1 Turkey
      • 5.6.5.2 GCC
      • 5.6.5.3 South Africa
      • 5.6.5.4 Rest of Middle East and Africa

6 Competitive Landscape

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles {(includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products & Services, and Recent Developments)}
    • 6.4.1 Robert Bosch GmbH
    • 6.4.2 DENSO Corporation
    • 6.4.3 Continental AG
    • 6.4.4 Infineon Technologies AG
    • 6.4.5 NXP Semiconductors NV
    • 6.4.6 Sensata Technologies PLC
    • 6.4.7 Texas Instruments Inc.
    • 6.4.8 Analog Devices Inc.
    • 6.4.9 Aptiv PLC
    • 6.4.10 ST Microelectronics NV
    • 6.4.11 Valeo SA
    • 6.4.12 Honeywell International Inc.
    • 6.4.13 Allegro MicroSystems LLC
    • 6.4.14 Murata Manufacturing Co.
    • 6.4.15 CTS Corporation
    • 6.4.16 Littelfuse Inc.
    • 6.4.17 ON Semiconductor Corp.
    • 6.4.18 TE Connectivity Ltd.
    • 6.4.19 Autoliv Inc.
    • 6.4.20 Melexis NV

7 Market Opportunities and Future Outlook

  • 7.1 White-space & Unmet-need Assessment