|  | 市場調查報告書 商品編碼 1844737 陶瓷泡沫:市場佔有率分析、行業趨勢、統計數據和成長預測(2025-2030)Ceramic Foam - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030) | ||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計 2025 年陶瓷泡沫市場規模為 4.9267 億美元,到 2030 年將達到 6.4329 億美元,預測期內(2025-2030 年)的複合年成長率為 5.48%。

由於陶瓷泡沫具有高溫穩定性、耐化學性和可控孔隙率,超越了許多傳統耐火材料和過濾介質,因此需求正在加速成長。電動車鑄造輪轂、氫氣設施和循環經濟鋼鐵小型廠的快速成長正在擴大基本客群。先進的複製製程在大批量生產中保持成本優勢,而積層製造為複雜的開孔形狀開闢了盈利的市場。隨著北美和歐洲零能耗建築標準的收緊,生產商正在尋找新的隔熱材料製造機會。同時,原料價格波動和全自動鑄造的脆性挑戰正在擠壓短期淨利率,促使供應商尋求材料強化和供應鏈對沖策略。
電動車平台使用大型鋁結構鑄件,需要極度潔淨的熔體才能滿足導電性和疲勞性能指標。發泡陶瓷過濾器使電池外殼和馬達外殼的熔融金屬濃度低於10 ppm。 Vesuvius報告稱,與傳統汽車生產線相比,電動車專用鑄造廠的SEDEX碳化矽過濾器利用率提高了40%。特斯拉上海工廠及亞洲其他類似工廠指定使用碳化矽發泡體進行高壓壓鑄,並推動了區域生產。這些規範提高了產量和可重複性標準,有利於採用改進的複製方法製造堅固的開孔形狀。亞太地區供應鏈的在地化努力進一步鞏固了泡沫陶瓷市場的區域主導地位。
電解槽和蒸氣重組的全球擴張推動了對耐火材料材料的需求,這些支撐材料能夠承受腐蝕性環境中600-900°C的反覆操作。英國陶瓷聯盟檢驗了一座100%氫燃料窯爐,證實了泡沫陶瓷適用於下一代能源系統。聖戈班集團正在紐約投資4,000萬美元,擴大觸媒撐體的生產,突顯其在北美市場的發展動能。以泡沫陶瓷增強的堇青石整體結構在800°C下可實現最佳選擇性,從而延長了重整器和固體氧化物燃料電池的使用壽命。隨著越來越多的地區啟動氫能藍圖,觸媒撐體訂單將為泡沫陶瓷市場提供永續的成長路徑。
高純度氧化鋁和氧化鋯在陶瓷泡沫製造中佔了很大一部分變動成本。價格的快速波動迫使企業不得不進行季度合約重新談判,並導致昂貴的現貨採購。氧化鋯增強材料可將抗壓強度提高206%,但原物料價格上漲使其經濟性下降。摩根先進材料公司指出,儘管其熱感陶瓷部門的訂單穩定,但銷售額仍下降了4.6%。缺乏長期合約的亞洲小型製造商的利潤率受到擠壓,這推遲了陶瓷泡沫行業的工廠升級和產能擴張。
碳化矽憑藉其在 1,500°C 以上的穩定性、耐熔融鋁性和優異的導熱性,將在 2024 年佔據陶瓷泡沫市場的 45.18%。電動車鑄件數量的增加和嚴格的含量限制支持了持續的需求。其他先進成分,如鎂鋁尖晶石、硼化物陶瓷和混合複合材料,構成了成長最快的叢集,複合年成長率為 7.76%,滿足了航太、核能和超高溫的需求。雖然其溫度上限限制了其在新興電動車和氫能領域的滲透,但氧化鋁由於其成本效益,在通用鑄鐵應用中仍然具有吸引力。氧化鋯在化學腐蝕性熔體中保持利基地位,其延長的使用壽命和增強的耐腐蝕性證明了其高價格是合理的。
第二代硼化物發泡體在1800°C以上溫度表現出抗氧化性能,可作為高超音速飛機的熱防護部件。研究原型在1000次熱循環後質量損失低於5%,這一里程碑可望推動其未來商業化應用。隨著材料科學家合成出結合晶鬚增強和氧化皮的多相發泡體,陶瓷泡沫市場或將逐步取代極端環境下的傳統氧化鋁。
得益於數十年的設備攤銷、低廢品率和熟悉的品管,複製法或聚合物海綿法在2024年生產了所有泡沫陶瓷出貨量的67.24%。此方法擅長生產孔徑在10至60 ppi之間的過濾器,有助於大量生產有色金屬鑄件。儘管佔據主導地位,但泡沫陶瓷市場正在轉向積層製造,其複合年成長率為7.91%。雷射燒結氧化鋁晶格和直接上墨堇青石載體可實現複製路線無法實現的分級孔隙率和拓撲最佳化。觸媒撐體和航太應用領域的早期採用者正在利用設計自由度來增強流動均勻性和機械彈性。
直接髮泡是指將氣體混入陶瓷漿料中,然後燒結所得泡沫,無需使用聚氨酯模板,也無需燃燒排放。它最常用於生產符合綠色建築標準的隔熱板。凝膠注模成型法適用於需要近淨成形精度的應用,例如生物醫學植入和半導體晶圓支架,但其相對較長的成型週期限制了其廣泛應用。
2024年,亞太地區46.82%的收入佔有率反映了其包括原料、鑄造設施和下游電動車生產的一體化供應鏈。中國持續的鋼鐵生產和日本先進的陶瓷研究將維持基準產量,而韓國的氫能經濟藍圖將推動未來對催化泡沫的需求。據預測,該地區的陶瓷泡沫市場預計將經歷顯著成長,預測期內複合年成長率將達到7.42%。政府對智慧製造和能源效率的補貼將推動其在鑄造、汽車和建築業的應用。
北美是一個成熟又富有創新的產業。該地區是積層製造領域的先驅,並受益於聯邦政府對氫能和電池供應鏈的津貼。聖戈班在紐約的擴張凸顯了其對國內催化劑支持需求的信心。美國更嚴格的汽車排放法規將刺激陶瓷排氣過濾器的消耗。中西部地區穩定的鑄鐵業務以及電動車零件鋁鑄件需求的成長將確保需求保持強勁。
循環經濟和碳中和鋼鐵法規是歐洲的優先事項,推動在短流程鋼廠使用可回收耐火發泡體。德國、法國和義大利升級鑄造生產線,配備自動過濾系統,推動了對更高強度泡沫配方的研究。歐盟補貼支持積層製造試驗生產線,用於生產用於航太和國防的客製化孔隙結構。嚴格的建築能源指令刺激了陶瓷隔熱板在維修計劃中的應用。
南美、中東和非洲規模雖小,但正在成長。巴西和阿根廷的汽車製造商正在採用鋁鑄過濾器,而沙烏地阿拉伯「2030願景」中的新鋼鐵產能將推動耐火材料需求。外國直接投資正在支持先進材料研究機構,從而提升本地研發能力。基礎設施缺口和技術專長有限正在減緩應用速度,但本地製造夥伴關係可以釋放陶瓷泡沫產業的潛力。
The Ceramic Foam Market size is estimated at USD 492.67 million in 2025, and is expected to reach USD 643.29 million by 2030, at a CAGR of 5.48% during the forecast period (2025-2030).

Demand is accelerating as ceramic foam delivers high-temperature stability, chemical resistance and well-controlled porosity that outperform many legacy refractory and filtration media. Rapid growth in electric-vehicle casting hubs, hydrogen production facilities and circular-economy steel mini-mills is widening the customer base. Advanced replica processes retain cost advantages in high-volume production, while additive manufacturing opens profitable niches for complex open-cell geometries. Producers also see new insulation opportunities as North American and European zero-energy building codes tighten. Meanwhile, raw-material price volatility and brittleness challenges in fully automated foundries temper near-term margins, prompting suppliers to pursue material toughening and supply-chain hedging strategies.
Electric-vehicle platforms use large aluminum structural castings that require exceptionally clean melts to meet conductivity and fatigue targets. Ceramic foam filters now enable sub-10 ppm inclusion levels in battery housings and motor casings. Vesuvius reports 40% higher uptake of SEDEX silicon-carbide filters in EV-dedicated foundries compared with conventional automotive lines. Tesla's Shanghai operations and similar Asian facilities specify silicon-carbide foams for high-pressure die casting, driving regional volume. These specifications raise throughput and repeatability criteria that favor robust open-cell geometries produced via improved replica methods. Supply-chain localization efforts in Asia-Pacific further cement regional dominance of the ceramic foam market.
Global electrolyzer and steam-reform expansion demands refractory carriers that withstand cyclic 600-900 °C operation in corrosive atmospheres. The Ceramics UK consortium validated 100% hydrogen-fired kilns, confirming ceramic foam suitability for next-generation energy systems. Saint-Gobain is investing USD 40 million in New York to scale catalyst-carrier output, highlighting North American momentum. Cordierite monoliths reinforced with ceramic foam achieve optimal selectivity at 800 °C, extending service intervals for reformers and solid-oxide fuel cells. As more regions publish national hydrogen roadmaps, catalyst support orders provide a durable growth pathway for the ceramic foam market.
High-purity alumina and zirconia constitute a significant portion of the variable costs in ceramic foam production. Sharp price swings have forced quarterly contract renegotiations and spot purchases at elevated premiums. Zirconia toughening boosts compressive strength by 206% yet becomes less economical when raw-material indices spike. Morgan Advanced Materials noted a 4.6% revenue dip in its Thermal Ceramics unit despite stable order intake because surcharges lagged cost inflation. Smaller Asian producers, lacking long-term contracts, experienced margin compression that slowed plant upgrades and capacity additions within the ceramic foam industry.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
Silicon carbide commanded 45.18% share of the ceramic foam market in 2024 due to its stability above 1,500 °C, resistance to molten aluminum and superior thermal conductivity. Rising EV casting volumes and stringent inclusion limits underpin sustained demand. Other advanced compositions such as magnesium-aluminate spinel, boride ceramics and hybrid composites form the fastest-growing cluster at a 7.76% CAGR, fulfilling aerospace, nuclear and ultra-high-temperature needs. Aluminum oxide remains attractive for general-purpose iron casting thanks to cost-efficiency, though its temperature ceiling constrains penetration into new EV and hydrogen segments. Zirconium oxide retains a niche in chemically aggressive melts, where its premium price is justified by extended service life and enhanced corrosion resistance.
Second-generation boride foams demonstrate oxidation resistance above 1,800 °C, positioning them for hypersonic vehicle thermal-protection components. Research prototypes exhibit less than 5% mass loss after 1,000 thermal cycles, a milestone that could spur future commercialization. As material scientists synthesize multiphase foams combining whisker reinforcement and oxide scales, the ceramic foam market may witness incremental displacement of legacy alumina in extreme environments.
The replica or polymer-sponge process produced 67.24% of all ceramic foams shipped in 2024 owing to decades of equipment amortization, low scrap rates and familiar quality controls. It excels in producing filters with consistent pore sizes from 10 to 60 ppi, serving high-volume non-ferrous foundries. Despite its dominance, the ceramic foam market is pivoting toward additive manufacturing, the fastest-growing process at 7.91% CAGR. Laser-sintered alumina lattices and direct-ink-written cordierite carriers allow graded porosity and topology optimization unattainable with replica routes. Early adopters in catalyst support and aerospace exploit design freedom to enhance flow uniformity and mechanical resilience.
Direct foaming, which mixes gas into ceramic slurry then sinters the resulting froth, eliminates polyurethane templates and their associated burn-out emissions. Uptake is strongest in insulation panels targeting green-building credits. Gel casting endures in applications requiring near-net-shape precision, such as biomedical implants and semiconductor wafer supports, though its relatively long cycle times limit broader diffusion.
The Ceramic Foam Market Report is Segmented by Type (Aluminum Oxide, Silicon Carbide, and More), Manufacturing Process (Replica/Polymer Sponge Method, Direct Foaming, and More), Application (Molten Metal Filtration, Automotive Exhaust Filters, and More), End-User Industry (Foundry, Automotive, and More), and Geography (Asia-Pacific, North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).
Asia-Pacific's 46.82% revenue share in 2024 reflects its integrated supply chain encompassing raw materials, casting facilities and downstream EV production. China's continual steel output and Japan's advanced ceramics research sustain baseline volumes, while South Korea's hydrogen-economy roadmap raises future demand for catalyst foams. Forecasts indicate the region's ceramic foam market is projected to witness significant growth, supported by a robust 7.42% CAGR during the forecast period. Government grants for smart manufacturing and energy efficiency amplify adoption across foundry, automotive, and construction sectors.
North America represents a mature yet innovative arena. The region fields additive-manufacturing pioneers and benefits from federal hydrogen and battery-supply-chain funding. Saint-Gobain's New York expansion confirms confidence in domestic catalyst-support demand. Tightening US vehicle emissions rules stimulate ceramic exhaust filter consumption. Stable iron foundry operations in the Midwest and growing aluminum casting for EV parts ensure demand resilience.
Europe prioritizes circular economy mandates and carbon-neutral steel, driving uptake of recyclable refractory foams in mini-mills. Germany, France and Italy upgrade casting lines with automated filter-handling systems, spurring research into tougher foam formulations. EU grants back additive-manufacturing pilot lines that fabricate customized pore architectures for aerospace and defense. Stringent building energy directives stimulate ceramic insulation panel deployment in renovation projects.
South America and Middle East & Africa are smaller but rising. Brazilian and Argentinian automakers adopt aluminum casting filters, while new steel capacity in Saudi Arabia's Vision 2030 bolsters refractory demand. Foreign direct investment underpins advanced-materials institutes that enhance local competence. Infrastructure gaps and limited technical expertise slow adoption, yet localized production partnerships could unlock latent potential for the ceramic foam industry.
