封面
市場調查報告書
商品編碼
1687395

情感運算:市場佔有率分析、產業趨勢與統計、成長預測(2025-2030 年)

Affective Computing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 100 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

情感運算市場規模預計在 2025 年為 914.5 億美元,預計到 2030 年將達到 2712.5 億美元,預測期內(2025-2030 年)的複合年成長率為 24.29%。

情感運算-市場-IMG1

遠端醫療中對情感運算解決方案的需求不斷成長以及對社交智慧人工智慧代理的需求不斷成長是預計在預測期內推動情感運算市場成長的關鍵因素。此外,由於穿戴式科技的使用日益增多、網路在工業領域的普及率不斷提高以及世界各地的技術突破,對情感運算的需求預計還會成長。

主要亮點

  • 由於各行各業對提高安全性的需求日益成長,以及對虛擬助理偵測詐欺活動的需求,情感運算市場正在不斷發展。情感運算用於多種安全應用,例如語音激活生物識別以限制核准用戶的存取。運算能力的增強、通訊技術的改進以及人工智慧等新解決方案正在帶來新的可能性,對市場成長產生積極影響。
  • 情感運算的出現正在推動各種應用的成長。情感運算的一個重要領域是設計表現出自然情感能力或能夠令人信服的情感模擬的計算設備。例如針對有言語和情感殘障人士的殘障人士,開發了一個名為Gestele的原型,為殘障人士添加情感、手勢和其他形式的溝通。此技術也可用於個人化,偵測人的心情等因素並調節燈光、音樂類型、室溫等。
  • 此外,機器人技術的日益普及為採用這項技術提供了進一步的動力。機器人技術的最新進展對具有禮貌和社交智慧的人工智慧機器人產生了巨大的需求。國際機器人聯合會(IFR)發布的《世界機器人報告》也指出,去年全球安裝的工業機器人數量達到了5,17,385台。 2025年,全球工業機器人安裝數量預計將達到約69萬台。加入情感運算等附加功能可以使這些工業機器人更容易被接受,並改善人機互動。
  • 憑藉當前的技術力,人工智慧可以支援三項基本業務需求:自動化業務流程、分析資料以獲取洞察以及與客戶和員工互動。第三個層次需要認知參與。機器學習提供的認知洞察不同於傳統分析,需要更複雜的資料。由於這些因素,這些解決方案有望進一步改進。預計供應商將與最終用戶建立策略夥伴關係,利用資料用於開發目的並提供全面的解決方案和服務。
  • 此外,各種組織正在透過情感運算(也稱為情感人工智慧)的應用進行創新,預計這將在預測期內推動市場成長。例如,2022年8月,在麻省理工學院(MIT),一個創新團隊利用情緒AI來改善人們的心理健康和整體生活品質。麻省理工學院媒體實驗室情感運算研究小組最近的研究提供了實證證據,表明富有同理心的人工智慧(AI)機器學習有可能減輕憤怒對人類創造性解決問題的負面影響。
  • 情感運算市場的成長預計會受到其他重要考慮因素的阻礙,例如技術相容性問題和高昂的實施成本。情感運算需要大量的前期投資,而緩慢的實用化限制了該行業的擴張。系統成本高、使用者行為難以理解進一步限制了市場的發展。

情感運算市場趨勢

包括汽車產業在內的各行各業對科技的採用日益增多

  • 如今,一些最廣泛使用的有效計算技術和解決方案可以在汽車領域找到。大多數市場參與企業至少提供一種針對汽車應用的產品或服務。在汽車產業,有效的計算經常被用來建構 ADAS(高級駕駛輔助系統)。
  • ADAS 功能有兩種類型:舒適功能和安全功能。舒適功能旨在透過觸發閃光燈、聲音、感覺和輕微轉向建議等警報來警告駕駛。如果駕駛員未能對潛在的危險情況做出反應,安全功能將對汽車本​​身進行干預。預緊煞車、繫上安全帶、升起引擎蓋、自動煞車和規避轉向是一些可能的操作的例子。
  • 透過通知和警告駕駛員,汽車行業的一個重要且有效的計算應用還可以幫助減少事故。根據世界衛生組織估計,每年約有2,000萬至5,000萬人因道路交通事故而受到致命傷害,死亡人數約130萬人。行人、摩托車騎士和騎自行車的人是最危險的道路使用者,佔所有死亡人數的一半以上。 2030年永續議程設定了減少道路交通死亡和傷害的雄心勃勃的目標,包括透過在汽車行業使用有效的計算技術和經過驗證的方法來降低事故和死亡的風險。
  • 此外,Eyeris 和 Affectiva 還為汽車配備了鏡頭,以追蹤和回應駕駛員和乘客的行為和情緒。透過情緒技術監測駕駛員的困倦程度。它還可以用於啟動警報、透過激活姿勢、定位和連接智慧座椅來提高乘客舒適度、防止駕駛時憤怒和急躁事故等。
  • 此外,根據美國公路安全保險協會的數據,美國到2025年,美國上的自動駕駛汽車數量將達到350萬輛,到2030年將達到450萬輛。該公司還於2021年收購了Affectiva,將Affectiva的汽車技術融入SmartEye突破性的內部感測解決方案中。這些見解使汽車製造商能夠增強符合歐洲新車安全評估協會 (Euro NCAP) 標準的安全功能。汽車領域技術採用的大幅成長可能會為各種有效的運算解決方案提供者創造巨大的商機。

預計北美將佔據最大市場佔有率

  • 北美是全球最大的情感運算市場之一,以美國為主導。該地區擁有一些最活躍的研究機構,致力於為最終用戶開發創新有效的計算設備,特別是在醫療保健、市場研究和汽車領域。此外,隨著人工智慧和其他先進技術基礎設施的改善,該地區主要包括部署有效運算所需的各種基礎設施。
  • 此外,各組織正在積極研究情感運算的新技術。例如,2022年9月,密西根大學CSE系研究人員的一篇論文被選為《IEEE情感運算學報》上發表的五篇論文之一。研究人員提案了一種新方法來擴大情緒聲音的範圍,以提高整個資料集的辨識表現。
  • 此外,麻省理工學院等研究機構也集中在該地區,進行多個研究計劃,包括對觸覺訊號的情緒反應和現實生活中的自動壓力識別。麻省理工學院媒體實驗室設有一個部門,名為情感運算小組,主要致力於研究傳達情感和認知狀態的新方法,以及發明個人技術以提高對情緒狀態的自我認知。
  • 過去十年,麻省理工學院媒體實驗室的情感運算小組誕生了多家公司。例如,領先的情感運算公司Affectiva Inc.已經在全球市場上佔有一席之地。自成立以來,該公司已籌集了超過 6000 萬美元。
  • 許多加拿大公司正專注於開發新的手勢和語音辨識解決方案。加拿大公司 GestSure Systems 提供一種手勢軟體介面,使醫生可以在無菌手術室外存取電腦化的病人記錄。該公司還提供充當 USB 橋的硬體,允許 Kinect 將 CT 和 MRI資料傳輸到現有的醫院 PC。滑鼠指令被轉換成手勢,讓外科醫生可以解放雙手來操作影像。
  • 此外,總部位於加拿大的Baanto公司開發了ShadowSense技術,這是一種基於光學定位的觸控技術,可用於多個觸控螢幕顯示器。該公司剛剛宣布將於2022年3月推出一款適用於高性能軍事應用的27吋夜視成像系統樣品。

情感運算行業概況

情感運算市場現有參與者之間的競爭非常激烈,他們正在採取積極的收購策略來佔領市場並透過新的解決方案增加先發優勢。 Affectiva Inc.、IBM Corporation、Nuance Communications Inc.、Element Human Ltd. 和 Kairos AR Inc. 是佔據市場重要佔有率的知名企業。

2022 年 6 月,Nuance Communications 宣布與 SCIENTIA Puerto Rico, Inc. 建立合作夥伴關係,以擴大 Nuance語音辨識解決方案 Dragon Medical One 的使用範圍,讓島上的醫生和護士能夠使用,從而提高臨床文件和患者治療結果的質量,同時減少導致臨床醫生倦怠的行政業務。同樣在 2022 年 6 月,臨床級語音分析領域的領導者 Oral Analytics 宣布與數位生物標記開發商 Koneksa 建立合作夥伴關係,以利用 Oral Analytics 的技術 Speech Vitals 進一步加強其平台和研究能力。

其他福利

  • Excel 格式的市場預測 (ME) 表
  • 3 個月的分析師支持

目錄

第 1 章 簡介

  • 研究假設和市場定義
  • 研究範圍

第2章調查方法

第3章執行摘要

第4章 市場洞察

  • 市場概況
  • 產業吸引力-波特五力分析
    • 供應商的議價能力
    • 消費者議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭強度
  • COVID-19 市場影響評估

第5章 市場動態

  • 市場促進因素
    • 客服中心自動化的興起
    • 擴大採用雲端基礎和線上的解決方案
    • 包括汽車產業在內的各行各業對科技的採用日益增多
  • 市場挑戰
    • 醫療保健核准時間長
    • 隱私和安全問題

第6章 技術簡介

  • 語音辨識
  • 手勢姿態辨識
  • 臉部辨識
  • 其他類型

第7章 市場區隔

  • 按組件
    • 硬體
      • 感應器
      • 相機
      • 儲存設備和處理器
      • 其他組件
    • 軟體
      • 分析軟體
      • 企業軟體
      • 臉部辨識
      • 手勢姿態辨識
      • 語音辨識
  • 按最終用戶產業
    • 衛生保健
    • 零售
    • 其他最終用戶產業
  • 按地區
    • 北美洲
    • 歐洲
    • 亞洲
    • 拉丁美洲
    • 中東和非洲

第8章 競爭格局

  • 公司簡介
    • Affectiva Inc.
    • Element Human Ltd
    • Kairos AR Inc.
    • Nuance Communications Inc.(Microsoft Corporation)
    • IBM Corporation
    • Gesturetek Inc.
    • Nemesysco Ltd
    • Realeyes Data Services Ltd
    • audEERING GmbH
    • Eyesight Technologies Ltd
    • Emotibot Technologies Limited
    • Amazon Web Services Inc.

第9章投資分析

第10章 市場機會與未來趨勢

簡介目錄
Product Code: 62323

The Affective Computing Market size is estimated at USD 91.45 billion in 2025, and is expected to reach USD 271.25 billion by 2030, at a CAGR of 24.29% during the forecast period (2025-2030).

Affective Computing - Market - IMG1

The rise in demand for telehealth-related affective computing solutions and the rising need for socially intelligent artificial agents are some significant factors that are anticipated to propel the growth of the affective computing market during the projected period. Furthermore, the demand for effective computing is expected to develop due to the increasing use of wearable technology, increased internet penetration across industrial verticals, and global technical breakthroughs.

Key Highlights

  • The affective computing market is developing due to the growing need for improved security in various industries and the demand for virtual assistants to detect fraudulent activities. Affective computing is used in multiple security applications, such as voice-activated biometrics, to restrict access to unapproved users. With the advancement in computing capacity, improved communication technology, and new solutions, such as AI, new possibilities are being realized, which will positively impact the market's growth.
  • The emergence of affective computing has driven the growth of various applications. One of the significant areas in affective computing has been the design of computational devices that are proposed to showcase either natural emotional capabilities or capable of convincingly simulating emotions. For example, for speech impairments and emotionally handicapped people, Gestele, a prototype, was developed that adds to the affected people's emotions, gestures, or other forms of communication. The technology can also be used for personalization by adjusting light, type of music, and room temperature by detecting a person's mood, etc.
  • Moreover, the increasing usage of robotics provides further incentives for implementing this technology. The recent advancement in robotics has led to an immense increase in the demand for artificially intelligent robots to behave politely and socially smartly. A report on World Robotics by the International Federation of Robotics (IFR) also showcased that worldwide industrial robot installations amounted to some 517,385 last year. It is prognosticated that by 2025, global industrial robot installations will amount to around 690,000. Additional feature inclusion, such as affective computing, can make these industrial robots much more acceptable and have better human-computer interaction.
  • In its present technological capabilities, AI can support three essential business needs: automation of business processes, gaining insight through data analysis, and engaging with customers and employees. The third level requires cognitive engagement. Cognitive insights offered by machine learning differ from traditional analytics and require higher-level data. Due to such factors, these solutions are expected to improve further. Vendors are expected to form strategic partnerships with the end users to use the data for development purposes and offer them comprehensive solutions and services.
  • Moreover, various organizations are engaged in innovations in applying affective computing (also called Emotional AI), which is expected to drive market growth during the forecast period. For instance, in August 2022, At the Massachusetts Institute of Technology (MIT), an innovative team used emotional AI to enhance people's mental well-being and general quality of life. Recent research from the MIT Media Lab's Affective Computing Research Group presents empirical proof that empathic artificial intelligence (AI) machine learning may mitigate the negative impacts of rage on human creative problem-solving.
  • Affective computing market growth is anticipated to be hampered by issues with technical compatibility and high implementation costs, among other essential considerations. Implementing emotional computing requires a significant upfront investment, and delay in practical applications limits industry expansion. The system's expensive costs and difficulty comprehending user behavior further limit the market's development.

Affective Computing Market Trends

Rising Technology Adoptions in Various Industries such as Automotive

  • Currently, some of the most widely used effective computing technologies and solutions are found in the automotive sector. The majority of market participants offer at least one good or service geared toward automobile applications. In the automotive industry, affective computing is frequently used to create Advanced Driver-Assistance Systems (ADAS).
  • The two categories of ADAS functions are comfort functions and security functions. The comfort feature is designed to warn the driver by causing alerts like flashing lights, sounds, sensations, or light steering recommendations. In the event that the driver does not respond to a potentially hazardous scenario, the security feature is designed to intervene within the car itself. Brake preloading, seatbelt installation, hood pulling, automatic braking, and avoidance steering are examples of possible maneuvers.
  • By notifying and warning the drivers, the key effective computing applications in the automotive industry also aid in reducing accidents. As per the WHO (World Health Organization), it is estimated that 20-50 million people suffer from fatal injuries in traffic accidents each year, killing around 1.3 million people. Pedestrians, motorcyclists, and cyclists are among the most at-risk road users, accounting for more than half of all fatalities. The 2030 Agenda for Sustainable Development sets lofty goals for reducing road traffic injuries, including effective computing technology in the automobile industry, using proven methods to lower the risk of accidents and fatalities.
  • Moreover, to track and react to the actions and feelings of drivers and passengers, Eyeris and Affectiva put cameras in the automobiles. Driver drowsiness is monitored via emotional technology. It can also be used to start alarms, postures, and positioning, connect to intelligent seats to increase passenger comfort, prevent driving rage, impatient accidents, etc.
  • Further, according to the Insurance Institute for Highway Safety, self-driving cars in the United States are anticipated to reach 3.5 million by 2025 and 4.5 million by 2030. Also, to incorporate Affectiva's automotive technology into SmartEye's ground-breaking interior sensing solution, the company bought Affectiva in 2021. These insights enable the Automakers to enhance safety features to meet Euro NCAP standards. Such a significant rise in technology adoption in the automotive segment would create considerable opportunities for various effective computing solution providers.

North America is Expected to Hold the Largest Market Share

  • The North American region has been one of the largest markets for affective computing globally, majorly led by the United States. The area comprises some of the most active research organizations working toward developing innovative, effective computing devices capable of serving several end-user applications, especially in the healthcare, market research, and automotive sectors. Moreover, with the improved infrastructure for artificial intelligence and other advanced technologies, the region consists of various infrastructures that are primarily required to deploy effective computing.
  • Also, various organizations actively research new technologies in affective computing. For instance, in September 2022, Researchers from Michigan University's CSE department identified one of their papers as one of the top five to appear in IEEE Transactions on Affective Computing. The researchers suggested new approaches for expanding the scope of representations of speech for emotion to boost recognition performance across datasets.
  • Moreover, research organizations such as MIT have also been concentrated in the region, conducting multiple research projects, including Affective Response to Haptic Signals and Automatic Stress Recognition in Real-Life Settings, among others. The university has a department in the MIT media lab called the Affective Computing Group, which majorly researches new methods of communicating affective and cognitive states and inventing personal technologies for improving self-awareness of affective states, which is further anticipated to increase the investments in the region driving the growth of affective computing.
  • Over the past decade, several companies emerged from the Affective Computing Group of MIT Media Lab (research laboratory at the Massachusetts Institute of Technology). For instance, Affectiva Inc., a major affective computing company, has established its footprint in the global market. The company has raised over USD 60 million since its inception.
  • Many Canadian businesses are concentrating on developing new gesture and speech recognition solutions. The Canadian company GestSure Systems offers a gesture software interface that allows doctors to access patient records on computers in locations other than sterile operation rooms. Also, the company provides hardware that serves as a USB bridge to interchange CT and MRI data with an already installed hospital PC using Kinect. Surgeons can navigate images without using their hands since mouse commands are translated into gestures.
  • Additionally, a Canadian-based company, Baanto, has developed ShadowSense Technology, an optical positioning-based touch technology that can be used on multiple touchscreen displays. In March 2022, the company recently announced 27-inch night vision imaging system samples for high-performance military applications.

Affective Computing Industry Overview

The competition among the existing market players in the affective computing market is high, making them prone to aggressive acquisition strategies to capture the market and enhance the first mover's advantage with new solutions. Affectiva Inc., IBM Corporation, Nuance Communications Inc., Element Human Ltd., and Kairos AR Inc. are a few prominent players with a significant share of the market.

In June 2022, Nuance Communications announced a partnership with SCIENTIA Puerto Rico, Inc. to expand access to Nuance's Dragon Medical One speech recognition solution for the island's physicians and nurses to improve clinical documentation quality and patient outcomes while reducing administrative workloads that contribute to clinician burnout. Also, in June 2022, Aural Analytics, Inc., a prominent player in clinical-grade speech analytics, announced a partnership with Koneksa, a player in digital biomarker development, to further strengthen its platform and research capabilities using Aural Analytics' technology, Speech Vitals.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Consumers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Assessment of the Impact of COVID-19 on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increased Automation in Contact Centers
    • 5.1.2 Increasing Adoption of Cloud-based Solutions and Online Solutions
    • 5.1.3 Rising Technology Adoptions in Various Industries such as Automotive
  • 5.2 Market Challenges
    • 5.2.1 High Approval Times in Healthcare
    • 5.2.2 Privacy and Security Concerns

6 TECHNOLOGY SNAPSHOT

  • 6.1 Speech Recognition
  • 6.2 Gesture Recognition
  • 6.3 Facial Recognition
  • 6.4 Other Types

7 MARKET SEGMENTATION

  • 7.1 By Component
    • 7.1.1 Hardware
      • 7.1.1.1 Sensors
      • 7.1.1.2 Cameras
      • 7.1.1.3 Storage Devices and Processors
      • 7.1.1.4 Other Components
    • 7.1.2 Software
      • 7.1.2.1 Analytics Software
      • 7.1.2.2 Enterprise Software
      • 7.1.2.3 Facial Recognition
      • 7.1.2.4 Gesture Recognition
      • 7.1.2.5 Speech Recognition
  • 7.2 By End-user Industry
    • 7.2.1 Healthcare
    • 7.2.2 Automotive
    • 7.2.3 Retail
    • 7.2.4 Other End-user Industries
  • 7.3 By Geography
    • 7.3.1 North America
    • 7.3.2 Europe
    • 7.3.3 Asia
    • 7.3.4 Latin America
    • 7.3.5 Middle East and Africa

8 COMPETITIVE LANDSCAPE

  • 8.1 Company Profiles
    • 8.1.1 Affectiva Inc.
    • 8.1.2 Element Human Ltd
    • 8.1.3 Kairos AR Inc.
    • 8.1.4 Nuance Communications Inc. (Microsoft Corporation)
    • 8.1.5 IBM Corporation
    • 8.1.6 Gesturetek Inc.
    • 8.1.7 Nemesysco Ltd
    • 8.1.8 Realeyes Data Services Ltd
    • 8.1.9 audEERING GmbH
    • 8.1.10 Eyesight Technologies Ltd
    • 8.1.11 Emotibot Technologies Limited
    • 8.1.12 Amazon Web Services Inc.

9 INVESTMENT ANALYSIS

10 MARKET OPPORTUNITIES AND FUTURE TRENDS