封面
市場調查報告書
商品編碼
1641982

資料角力:市場佔有率分析、產業趨勢與統計、成長預測(2025-2030)

Data Wrangling - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 100 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

資料角力市場規模預計在 2025 年為 37.9 億美元,預計到 2030 年將達到 63.9 億美元,預測期內(2025-2030 年)的複合年成長率為 11.03%。

資料整理-市場-IMG1

各種自動化技術的出現已經增強和改進了資料縮減程序。預計在預測期內,該行業將提出更複雜的人工智慧解決方案來協助資料細化和資料分析過程。

主要亮點

  • 隨著許多行業收集的資料量和可靠性的快速發展,人們開始採用先進的分析演算法來選擇可能徹底改變營業單位的見解。巨量資料使用量的快速成長也產生了大量非結構化資料。迭代和互動式資料分析應用程式可以識別分佈和不一致性並提案流程改進建議。
  • 資料操作可以透過提高資訊的一致性來提供對元資料的統計洞察。元資料的更高一致性使得自動化技術能夠更快、更準確地查詢資料,從而經常導致這樣的發現。資料縮減主要是為了根據預期的市場表現開發模型,清理訊息,以便模型能夠正常運作。
  • 企業擴大使用資料角力來即時預測和監控可能影響業務績效的大量事件。資料角力市場正在成長,因為它有潛力透過針對網路攻擊和其他緊急情況等意外事件做出複雜的決策來降低風險。此外,隨著網路攻擊的增加,資料變得越來越容易找到和恢復,對資料角力的需求也在增加。
  • 人們對資訊遺失或被盜的擔憂日益增加、BYOD(自帶設備)趨勢日益成長以及業務敏捷性只是推動資料角力市場成長的幾個因素。預計資料角力行業將從邊緣運算的進步中受益匪淺。
  • 然而,資料品質問題限制了市場擴張。資料角力產業預計將面臨挑戰,因為它尚未準備好從傳統的 ETL 工具轉向尖端的自動化技術。此外,擴大這一市場的主要障礙之一是中小企業缺乏有關資料角力工具的了解。
  • 新冠疫情爆發帶來大量資料湧入。科技公司和資料聚合商利用來自手機訊號塔和行動應用程式的本地資料來實施社會隔離,並透過儀表板解決聯絡人監控和追蹤方面的差異。該應用程式使用藍牙、建模工作和定位服務來預測醫院需求和傳染病負擔。預計,由於該程式產生的資料有缺陷,數百萬人將受到不利影響。資料角力用於清理、正確格式化和豐富原始資料,以幫助使用者做出更快、更準確的決策。因此,COVID-19 的資料角力要求為市場擴張提供了潛力。

資料角力市場趨勢

分析:大公司佔有較大的市場佔有率

  • 大型企業預計將在資料角力市場佔據主要市場佔有率,這主要是由於人工智慧和機器學習的應用增加,以及先進技術的大量採用導致資料量增加。此外,大型企業日益增加的監管壓力預計將為未來幾年的市場擴張提供巨大的成長機會。
  • 此外,資料管理解決方案能夠透過快速分析和採取行動來實現更好、更快的決策並提供競爭優勢,這進一步推動了大型企業的需求。此外,大型企業正在採用資料角力來即時監控和預測可能影響大型組織績效的各種事件。
  • 此外,據 IBM 稱,不同公司、國家和產業的人工智慧採用情況存在差異。大型企業在營運中積極使用人工智慧的可能性是其他企業的兩倍,而中小企業的可能性較小。企業更有可能探索人工智慧,而不是積極追求人工智慧。截至英國,中國和印度超過一半的 IT 工作者預計他們的組織美國我認為他們正在積極採用人工智慧。
  • 而且隨著巨量資料的發展,大公司也不斷發現新的資料類型。然而,隨著科技創造越來越多的資料來源,資料管理對企業來說繼續成為更大的挑戰。這些公司認知到資料管理在大型企業中的重要性,從而推動了市場成長。

預計北美將佔很大佔有率

  • 預計北美將在預測期內主導資料角力市場,因為它是對資料角力工具和服務採用貢獻最大的地區之一。此外,預計主要供應商的存在和終端用戶行業的日益採用將在預測期內推動該地區的市場成長。
  • 隨著工業 4.0 服務的出現以及巨量資料的應用,該地區預計將經歷顯著的成長。此外,巨量資料在美國是一個巨大的現象,各行各業的公司都透過收集、分析和處理來自多個來源的大量資料來獲利。
  • 持有大量股份的公司主要位於北美,並透過在該地區進行大量投資和發展,大力推動市場發展。 Trifacta、Altair Engineering, Inc、TIBCO Software Inc、Oracle Corporation 和 SAS Institute Inc 等公司都位於美國,並活躍於該地區的資料管理業務。
  • 該地區日益興起的技術趨勢,例如各種技術的投資、採用和整合,可能會為資料角力技術創造巨大的商機,以幫助企業高效地處理大量資料。此外,疫情過後雲端運算採用趨勢的上升正在推動該地區市場的成長。

資料角力產業概覽

資料角力市場因 Alteryx, Inc.、Oracle Corporation 和 Teradata Corporation 等幾家主要參與者的存在而變得更加鞏固。有幾家主要企業,包括 Alteryx、Oracle 和 Teradata,他們正在透過不斷的技術創新來獲得競爭優勢。透過研發、策略夥伴關係和併購,這些參與者在市場上佔據了更大的佔有率。

2023 年 3 月,Simplebim 發布了其 BIM資料管理軟體的第 10 版,供建設公司、BIM 經理、建築師、結構和設計工程師使用。據該公司稱,其最新版本開闢了使用 IFC 文件中資料的新方法,以增強生產計畫和調度、採購、競標、成本估算、監控、安裝操作以及 BIM資料的其他下游用途。可能會讓你這樣做。

其他福利

  • Excel 格式的市場預測 (ME) 表
  • 3 個月的分析師支持

目錄

第 1 章 簡介

  • 研究假設和市場定義
  • 研究範圍

第2章調查方法

第3章執行摘要

第4章 市場洞察

  • 市場概況
  • 產業價值鏈分析
  • 產業吸引力-波特五力分析
    • 供應商的議價能力
    • 購買者/消費者的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭對手之間的競爭強度
  • COVID-19 市場影響評估

第5章 市場動態

  • 市場促進因素
    • 資料量不斷增加
    • 人工智慧和巨量資料技術的進步
    • 對資料可靠性的擔憂日益增加
  • 市場限制
    • 公司缺乏對資料管理工具的認知
    • 顯式資料存取權限

第6章 市場細分

  • 按組件
    • 工具
    • 服務
  • 按部署
    • 雲端基礎
    • 本地
  • 按公司類型
    • 小型至中型
    • 大規模
  • 按最終用戶產業
    • 資訊科技/通訊
    • 零售
    • 政府
    • BFSI
    • 衛生保健
    • 其他最終用戶產業
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
    • 歐洲
      • 英國
      • 德國
      • 法國
      • 其他歐洲國家
    • 亞太地區
      • 中國
      • 日本
      • 新加坡
      • 其他亞太地區
    • 拉丁美洲
      • 墨西哥
      • 巴西
      • 其他拉丁美洲國家
    • 中東和非洲
      • 阿拉伯聯合大公國
      • 沙烏地阿拉伯
      • 其他中東和非洲地區

第7章 競爭格局

  • 公司簡介
    • Alteryx, Inc.
    • TIBCO Software Inc.(Cloud Software Group, Inc.)
    • Altair Engineering Inc.
    • Teradata Corporation
    • Oracle Corporation
    • SAS Institute Inc.
    • Datameer, Inc.
    • DataRobot, Inc.
    • Cloudera, Inc.
    • Cambridge Semantics, Inc.

第8章投資分析

第9章 市場機會與未來趨勢

簡介目錄
Product Code: 64268

The Data Wrangling Market size is estimated at USD 3.79 billion in 2025, and is expected to reach USD 6.39 billion by 2030, at a CAGR of 11.03% during the forecast period (2025-2030).

Data Wrangling - Market - IMG1

The creation of various automated technologies has already enhanced and improved the data-wrangling procedure. The industry would create more complex AI solutions during the forecast period to assist the processes of data wrangling and data analysis.

Key Highlights

  • The adoption of sophisticated analytics algorithms to choose insights that might revolutionize a business entity results from the rapid development in the quantity and reliability of data collected throughout many industrial verticals. Massive amounts of unstructured data have also been produced due to the surge in Big Data usage. Applications for iterative and interactive data wrangling may identify distributions and inconsistencies and suggest process improvement.
  • Data manipulation can offer statistical insights into the metadata by making the information more consistent. Increased metadata consistency makes it possible for automated technologies to examine the data more quickly and precisely, frequently leading to these findings. Data wrangling would clean the information to enable a model to operate without problems, mainly in developing a model about expected market performance.
  • Businesses are increasingly using data wrangling for real-time forecasting and monitoring of numerous events that may impact their performance. The market for data wrangling is expanding due to the potential to mitigate risks by executing complicated judgments concerning unplanned occurrences, such as cyberattacks and other emergencies. Also, as more cyberattacks occur, there is a growing demand for data wrangling since it makes data simpler to find and recover.
  • Growing concerns about information loss and theft, expanding Bring Your Own Device (BYOD) trends, and business mobility are just a few factors that are significantly accelerating the growth of the data wrangling market.The industry of data wrangling is predicted to benefit significantly from advances in edge computing.
  • However, issues with data quality are limiting the market's ability to expand.The data-wrangling industry is anticipated to face challenges due to a lack of readiness to switch from conventional ETL tools to cutting-edge automated technologies. Further, one of the key obstacles to this market's expansion is the lack of knowledge about data-wrangling tools among small and medium-sized businesses.
  • The COVID-19 epidemic brought on a considerable data influx. Technological firms and data aggregators exploited local data from cell towers and mobile applications to impose social segregation and close the gaps using dashboards that monitored and tracked contacts. Applications predicted hospital requirements and epidemic burden using Bluetooth, modeling efforts, and geolocation services. As a result of the flawed data produced throughout this procedure, millions of people were expected to be negatively impacted. Data wrangling is used to clean, arrange, and enhance raw data into the appropriate format for users to make better decisions more quickly and accurately. As a result, COVID-19's requirement for data wrangling provided market potential for expansion.

Data Wrangling Market Trends

Large Enterprises are Analyzed to Hold Significant Market Share

  • Large enterprises are expected to hold significant market share in the data wrangling market primarly due to increasing adoption of AI and ML, growing volume of data owing to the substantial adoption of advanced technologies. Furthermore, increasing regulatory pressure among the large enterprises is expected to present major growth opportunities for the expansion of the market in future.
  • Additionally, the ability of data-wrangling solutions to deliver better and faster decision-making and to offer a competitive advantage by analyzing and acting upon information promptly further boosts the demand among large enterprises. Furthermore, large enterprises are adopting data wrangling for real-time monitoring and forecasting of various occasions that may affect the performance of large organizations.
  • Moreover, according to IBM, the adoption of AI varies amongst businesses, countries, and sectors. While larger firms are twice as likely to have actively used AI as part of their company operations, smaller businesses are less likely. Companies are more likely to investigate AI than actively pursue it. As of 2022, a majority of IT workers in China and India, compared to markets like South Korea (22%), Australia (24%), the United States (25%), and the United Kingdom (26%), believe their organization is already actively employing AI.
  • Further, large businesses are constantly discovering new data kinds as big data continues to progress. Data management, however, keeps becoming a more significant challenge for firms as technology produces more and more data sources. Such companies significantly recognize the importance of data wrangling in the large businesses, thereby driving market growth.

North America is Expected to Hold the Significant Share

  • North America is expected to dominate data wrangling during the forecast period, as the region remains one of the most significant contributors to the adoption of data wrangling tools and services. Further, the presence of major market vendors coupled witg growing adoption among end-user industries is analyzed to boost the market growth in the region over the forecast period.
  • The region is expected to witness massive growth along with the application of big data due to the emergence of Industry 4.0 services. Moreover, big data is an enormous phenomenon in the United States, and companies from various industries benefit from collecting, analyzing, and manipulating vast amounts of data from multiple sources.
  • The significant shareholding firms are considerably based in the North America region, which significantly drives the market with considerable investments and developments in the region. Companies such as Trifacta, Altair Engineering, Inc., TIBCO Software Inc., Oracle Corporation, SAS Institute Inc., etc., are based in the United States and are actively engaged in the operation of data wrangling in the region.
  • The rising technological trends in terms of investments, adoption, and integration of various technologies in the region would significantly create opportunities for data wrangling technology in assisting firms to work effectively in handling huge amounts of data. Further, the increased trends of cloud adoption in the region post-pandemic boosted market growth in the region.

Data Wrangling Industry Overview

The data wrangling market is consolidated owing to the presence of a few key players, such as Alteryx, Inc., Oracle Corporation, and Teradata Corporation, amongst others. Their ability to continually innovate their offerings has allowed them to gain a competitive advantage over others. Through research and development, strategic partnerships, and mergers and acquisitions, these players have gained a stronger footprint in the market.

In March 2023, Simplebim released version 10 of its BIM data wrangling software used by construction firms, BIM managers, architects, and structural and design engineers. According to the company, the latest release by the company opens up new ways to use data in IFC files to enable enhanced production planning and scheduling, procurement, tendering, cost estimation, monitoring, installation work, and other downstream BIM data usage.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Value Chain Analysis
  • 4.3 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.3.1 Bargaining Power of Suppliers
    • 4.3.2 Bargaining Power of Buyers/Consumers
    • 4.3.3 Threat of New Entrants
    • 4.3.4 Threat of Substitute Products
    • 4.3.5 Intensity of Competitive Rivalry
  • 4.4 Assessment of the Impact of COVID-19 on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Growing Volumes of Data
    • 5.1.2 Advancement in AI And Big Data Technologies
    • 5.1.3 Growing Concern about Data Veracity
  • 5.2 Market Restraints
    • 5.2.1 Lack Of Awareness Of Data Wrangling Tools Among Enterprises
    • 5.2.2 Explicit Data Access Permission

6 MARKET SEGMENTATION

  • 6.1 By Component
    • 6.1.1 Tools
    • 6.1.2 Service
  • 6.2 By Deployment
    • 6.2.1 Cloud-Based
    • 6.2.2 On-premises
  • 6.3 By Enterprise Type
    • 6.3.1 Small and Medium Sized
    • 6.3.2 Large
  • 6.4 By End-user Industry
    • 6.4.1 IT and Telecommunication
    • 6.4.2 Retail
    • 6.4.3 Government
    • 6.4.4 BFSI
    • 6.4.5 Healthcare
    • 6.4.6 Other End-user Industries
  • 6.5 Geography
    • 6.5.1 North America
      • 6.5.1.1 United States
      • 6.5.1.2 Canada
    • 6.5.2 Europe
      • 6.5.2.1 United Kingdom
      • 6.5.2.2 Germany
      • 6.5.2.3 France
      • 6.5.2.4 Rest of Europe
    • 6.5.3 Asia-Pacific
      • 6.5.3.1 China
      • 6.5.3.2 Japan
      • 6.5.3.3 Singapore
      • 6.5.3.4 Rest of Asia-Pacific
    • 6.5.4 Latin America
      • 6.5.4.1 Mexico
      • 6.5.4.2 Brazil
      • 6.5.4.3 Rest of Latin America
    • 6.5.5 Middle East and Africa
      • 6.5.5.1 United Arab Emirates
      • 6.5.5.2 Saudi Arabia
      • 6.5.5.3 Rest of Middle-East & Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Alteryx, Inc.
    • 7.1.2 TIBCO Software Inc. (Cloud Software Group, Inc.)
    • 7.1.3 Altair Engineering Inc.
    • 7.1.4 Teradata Corporation
    • 7.1.5 Oracle Corporation
    • 7.1.6 SAS Institute Inc.
    • 7.1.7 Datameer, Inc.
    • 7.1.8 DataRobot, Inc.
    • 7.1.9 Cloudera, Inc.
    • 7.1.10 Cambridge Semantics, Inc.

8 INVESTMENT ANALYSIS

9 MARKET OPPORTUNITIES AND FUTURE TRENDS