封面
市場調查報告書
商品編碼
1807074

胜肽癌症疫苗的全球市場:市場機會,技術平台,臨床試驗趨勢(2030年)

Global Peptide Cancer Vaccine Market Opportunity, Technology Platforms & Clinical Trials Insight 2030

出版日期: | 出版商: KuicK Research | 英文 220 Pages | 商品交期: 最快1-2個工作天內

價格

全球勝肽類抗癌疫苗市場:市場機會、技術平台及臨床試驗趨勢(2030 年)報告結果及重點

  • 全球及區域市場趨勢洞察
  • 依來源、長度和抗原決定位特異性劃分的勝肽類抗癌疫苗
  • 臨床試驗中的勝肽類抗癌疫苗:超過 50 種疫苗
  • 美國在勝肽類抗癌疫苗研發領域佔主導地位:超過 20 種疫苗
  • 全球勝肽類抗癌疫苗臨床試驗洞察:按公司、國家、階段和適應症劃分
  • 以公司劃分的勝肽類抗癌疫苗研發技術平台洞察
  • 綜合格局

勝肽類抗癌疫苗的需求及本報告的意義

癌症仍然是全球最常見的死亡原因之一,而目前的治療方法,例如化療和放療,通常伴隨嚴重的副作用和不一致的緩解率。在這種情況下,基於勝肽的癌症疫苗可能提供一種可行的選擇,以最小的毒性實現癌症的標靶免疫破壞。透過利用腫瘤特異性勝肽或新抗原勝肽,這些疫苗能夠產生高度特異性的T細胞應答,其精準度可媲美免疫療法,而無需細胞或病毒載體平台的複雜性。

本報告旨在滿足日益增長的市場需求,為包括生物技術公司、投資者、醫療保健規劃人員和監管機構在內的利益相關者提供有關動態癌症肽疫苗市場的實用見解。由於許多候選藥物已進入臨床試驗階段並即將商業化,因此,了解其現狀和未來方向對於做出明智的決策至關重要。

報告中包含的臨床試驗見解

本報告提供了全球50多個正在進行和已完成的臨床試驗的詳細資訊。該報告按臨床試驗階段、癌症類型、治療標靶、聯合方案、申辦方、合作方、技術許可方和地區細分了研發管線。值得注意的是,人們對靶向多個表位的多價疫苗以及與檢查點抑制劑聯合研究的勝肽疫苗的興趣日益濃厚。

在後期臨床候選藥物中,SELLAS Life Sciences 的 Garinpepimut-S 目前正在進行 AML 的 III 期臨床試驗,並且在間皮瘤治療中也顯示出良好的前景。針對非小細胞肺癌、攝護腺癌、三陰性乳癌和膠質母細胞瘤的勝肽疫苗臨床試驗也正在進行中。這些試驗涵蓋了美國、歐盟、日本、中國和韓國等多個地區,凸顯了勝肽疫苗平台的國際吸引力。

參與勝肽類癌症疫苗研發的主要公司

許多製藥和生物技術公司正在開發基於勝肽的免疫療法研發管線。主要公司包括 Scancell Holdings、SELLAS Life Sciences、ISA Pharmaceuticals、Imugene 和 BrightPath Biotherapeutics。所有這些公司都在研究單價和多價疫苗策略。

有些公司針對常見的腫瘤抗原,而有些公司則根據新一代定序結果設計客製化的腫瘤新抗原疫苗。其他公司,如 OncoTherapy Science 和 VAXON Biotech,正在建立針對 WT1、MAGE-A3 和 survivin 等抗原的癌症特異性產品線。

技術平台、合作與協議

勝肽類癌症疫苗市場越來越受到尖端技術平台和策略合作夥伴關係的影響。 Moditope®(Scancell)和 Twin®(IO Biotech)等專有平台是關鍵的差異化因素,可提高免疫原性和遞送效率。此類平台能夠改善抗原決定位呈現、活化免疫細胞,並最大限度地降低免疫逃脫風險。

合作如今對於產品線開發至關重要。許多公司已經與CDMO、學術機構和大型製藥公司簽署了聯合開發協議。例如,SELLAS與紀念斯隆凱特琳癌症中心合作開發其GPS疫苗,此外,還有許多公司正在與歐洲和亞洲的區域製造夥伴合作,以提高GMP生產能力。允許肽庫和免疫資訊學工具交換的許可協議也在增加。

報告展示了勝肽類癌症疫苗領域的未來發展方向

報告指出,癌症勝肽疫苗的未來前景廣闊,但競爭激烈。目前,Riavax是韓國唯一獲批的勝肽類疫苗,儘管其概念被證明有效,但其批准隨後被撤銷。然而,自那時起,該領域的科學研究已取得顯著進展,包括增強抗原發現、更有效率的患者分層以及轉向聯合療法。

該領域的命運很可能由多表位疫苗和人工智慧及大數據分析賦能的新抗原個體化治療所掌控。商業利益很可能在膠質母細胞瘤、胰臟癌和難治性未滿足需求等尚未滿足的適應症中成長。隨著監管機構為免疫療法審批提供明確的指導方針並整合真實世界數據,未來三到五年內,幾種處於後期研發階段的勝肽類疫苗或將獲得批准。

本報告以數據為依據,深入洞察肽類癌症疫苗的創新趨勢、臨床試驗進展、合作、商業化管道等,使其成為希望在該領域保持領先地位的利益相關者的必讀之作。

目錄

第1章 胜肽癌症疫苗的簡介

  • 概要與歷史背景
  • 基於勝肽的腫瘤免疫療法

第2章 胜肽癌症疫苗的必要性

  • 為什麼勝肽類在癌症免疫療法中更受歡迎
  • 勝肽類疫苗與傳統癌症疫苗的比較
  • 勝肽類疫苗彌補的差距

第3章 胜肽癌症疫苗的作用機制

第4章 胜肽癌症疫苗的分類

  • 胜肽的來歷
  • 胜肽的長度
  • 表位特異性

第5章 勝肽類癌症疫苗的開發及各適應症的臨床趨勢

  • 腦瘤
  • 乳癌
  • 肺癌症
  • 皮膚癌症
  • 消化器官癌症
  • 婦產科癌症

第6章 全球胜肽癌症疫苗市場概要

  • 目前的市場情勢
  • 未來展望和革新的機會

第7章 各地區胜肽癌症疫苗市場開拓趨勢

  • 美國
  • 歐洲
  • 中國
  • 日本
  • 韓國

第8章 全球胜肽癌症疫苗開發平台(管線)概要

  • 各國
  • 各企業
  • 各適應症
  • 各期

第9章 胜肽癌症疫苗的臨床試驗相關各企業,各國,各期,各適應症的洞察

  • 前臨床
  • 第一階段
  • 第一/二階段
  • 第二階段
  • 第三階段

第10章 全球胜肽癌症疫苗市場動態

  • 主要的促進因素與機會
  • 市場課題與限制

第11章 各企業胜肽癌症疫苗開發的技術平台

第12章 競爭情形

  • 3D Medicines
  • BrightPath Biotherapeutics
  • Circio Holding
  • Cecava
  • Dx&Vx
  • Elicio
  • Evaxion
  • GemVax & KAEL
  • IO Biotech
  • ISA Pharmaceuticals
  • OncoTherapy Science
  • OSE Immunotherapeutics
  • Nouscom
  • Nykode Therapeutics
  • Scancell
  • SELLAS Life Sciences
  • Seqker Biosciences
  • Shionogi
  • Vaxon Biotech
  • Zelluna

Global Peptide Cancer Vaccine Market Opportunity, Technology Platforms & Clinical Trials Insight 2030 Report findings & Highlights:

  • Global & Regional Market Trends Insight
  • Peptide Cancer Vaccine Classification By Source, Length & Epitope Specificity
  • Peptide Cancer Vaccines In Clinical Trials: > 50 Vaccines
  • US Dominating Peptide Cancer Vaccines Development Landscape: > 20 Vaccines
  • Global Peptide Cancer Vaccine Clinical Trials Insight By Company, Country, Phase & Indication
  • Insight On Peptide Cancer Vaccine Development Technology Platforms By Companies
  • Completive Landscape

Peptide Cancer Vaccine Need & Why This Report?

Cancer remains among the most common causes of death globally, and current therapies like chemotherapy and radiation are frequently associated with serious side effects and inconsistent response rates. In such an instance, peptide based cancer vaccines could offer a viable option for targeted immune mediated cancer destruction with less toxicity. Such vaccines utilize tumor specific or neoantigenic peptides to generate extremely specific T-cell responses with the precision of immunotherapy without the intricacy of cell or viral vector platforms.

This report is aimed at filling an expanding market need by delivering stakeholders, including biotech firms, investors, healthcare planners, and regulators, with practical insights into the dynamic cancer peptide vaccine market. With a number of candidates undergoing clinical trials and nearing commercialization, insight into the current situation and future direction is necessary for intelligent decision making.

Clinical Trials Insight Included In Report

The report delivers in-depth information from more than 50 ongoing and completed clinical trials from all over the globe. It provides a breakdown of the pipeline by trial phase, cancer type, therapeutic target, and combination regimen, as well as sponsors, collaborators, technology licensors, and geographic regions. Interestingly, there is heightened interest in multivalent vaccines acting on several epitopes as well as peptide vaccines under investigation with checkpoint inhibitors.

Among the late stage clinical contenders, SELLAS Life Sciences' Galinpepimut-S is in a Phase III trial for AML and has also been active in mesothelioma. Other ongoing trials involve peptide vaccines in NSCLC, prostate cancer, triple-negative breast cancer, and glioblastoma. The trials cover a number of geographies, such as the US, EU, Japan, China, and South Korea, highlighting the international appeal of peptide vaccine platforms.

Leading Companies Engaged In R&D Of Peptide Cancer Vaccine

There are numerous biotechnology companies as well as pharmaceutical firms that are developing peptide based immunotherapy pipelines. Some of the key players are Scancell Holdings, SELLAS Life Sciences, ISA Pharmaceuticals, Imugene, and BrightPath Biotherapeutics. They are all working on both monovalent and polyvalent vaccine strategies.

Every firm has its own distinct approach; some aim at common tumor antigens, whereas others design customized neoantigen vaccines based on next-generation sequencing results. Then there are participants such as OncoTherapy Science and VAXON Biotech that are creating cancer-specific pipelines, in general, aimed at antigens such as WT1, MAGE-A3, or survivin.

Technology Platforms, Collaborations & Agreements

The peptide cancer vaccine market is more and more influenced by cutting-edge technology platforms and strategic partnerships. Exclusive platforms like Moditope(R) (Scancell) and T-win(R) (IO Biotech) are the main differentiators that improve immunogenicity and delivery efficacy. Such platforms allow improved epitope presentation, activation of immune cells, and minimizing the risk of immune escape.

Collaborations are now essential to the advancement of pipelines. Numerous companies are entering co-development deals with CDMOs, academic institutions, or bigger pharma partners. For instance, SELLAS has collaborated with Memorial Sloan Kettering for its GPS vaccine, and various companies are collaborating with regional manufacturing partners in Europe and Asia for ramping up GMP production. Licensing deals are also increasing, allowing the exchange of peptide libraries and immunoinformatics tools among partners.

Report Indicating Future Direction Of Peptide Cancer Vaccine Segment

The report suggests a very promising but competitive future for cancer peptide vaccines. Although Riavax is currently the sole peptide vaccine that has obtained market approval in South Korea, which was subsequently withdrawn, it demonstrated the validity of the concept. The science has developed considerably since, however, with enhanced antigen discovery, more efficient stratification of patients, and a move towards combination forms of therapy.

The destiny of this space will most probably be controlled by multiepitope vaccines and neoantigen personalization enabled by AI and big data analysis. Commercial interest is likely to increase in unmet need indications like glioblastoma, pancreatic cancer, and refractory NSCLC. With regulatory agencies offering clearer guidelines for immunotherapy approvals and integration of real-world data, some late-stage peptide vaccines may receive approvals in the next 3-5 years.

This report is a must read for stakeholders looking to ride the increasing tide in this space, providing data-driven insights on innovation trends, trial updates, collaborations, and commercialization channels in the landscape of peptide cancer vaccines.

Table of Contents

1. Introduction To Peptide Cancer Vaccines

  • 1.1 Overview & Historical Context
  • 1.2 Peptide Based Immunotherapy In Oncology

2. Need For Peptide Cancer Vaccines

  • 2.1 Why Peptides Are More Desirable In Cancer Immunotherapy
  • 2.2 Peptide Vaccines vs. Traditional Cancer Vaccines
  • 2.3 Gaps Addressed By Peptide Vaccines

3. Peptide Cancer Vaccines Mechanism Of Action

4. Classification Of Peptide Cancer Vaccines

  • 4.1 Based On Source Of Peptides
  • 4.2 Based on Peptide Length
  • 4.3 Based on Epitope Specificity

5. Peptide Cancer Vaccines Development & Clinical Trends By Indication

  • 5.1 Brain Cancer
  • 5.2 Breast Cancer
  • 5.3 Lung Cancer
  • 5.4 Skin Cancers
  • 5.5 Gastrointestinal Cancers
  • 5.6 Gynecologic Cancers

6. Global Peptide Cancer Vaccine Market Overview

  • 6.1 Current Market Landscape
  • 6.2 Future Outlook & Innovation Opportunities

7. Global Peptide Cancer Vaccine Market Development Trends By Region

  • 7.1 US
  • 7.2 Europe
  • 7.3 China
  • 7.4 Japan
  • 7.5 South Korea

8. Global Peptide Cancer Vaccine Pipeline Overview

  • 8.1 By Country
  • 8.2 By Company
  • 8.3 By Indication
  • 8.4 By Phase

9. Global Peptide Cancer Vaccine Clinical Trials Insight By Company, Country, Phase & Indication

  • 9.1 Preclinical
  • 9.2 Phase-I
  • 9.3 Phase-I/II
  • 9.4 Phase-II
  • 9.5 Phase-III

10. Global Peptide Cancer Vaccine Market Dynamics

  • 10.1 Key Drivers & Opportunities
  • 10.2 Market Challenges & Limitations

11. Technology Platforms For Peptide Cancer Vaccine Development By Companies

12. Competitive Landscape

  • 12.1 3D Medicines
  • 12.2 BrightPath Biotherapeutics
  • 12.3 Circio Holding
  • 12.4 Cecava
  • 12.5 Dx&Vx
  • 12.6 Elicio
  • 12.7 Evaxion
  • 12.8 GemVax & KAEL
  • 12.9 IO Biotech
  • 12.10 ISA Pharmaceuticals
  • 12.11 OncoTherapy Science
  • 12.12 OSE Immunotherapeutics
  • 12.13 Nouscom
  • 12.14 Nykode Therapeutics
  • 12.15 Scancell
  • 12.16 SELLAS Life Sciences
  • 12.17 Seqker Biosciences
  • 12.18 Shionogi
  • 12.19 Vaxon Biotech
  • 12.20 Zelluna

List of Figures

  • Figure 1-1: Peptide Cancer Vaccine Development - Key Milestones
  • Figure 1-2: Personalized Peptide Vaccines Based On Neoantigens
  • Figure 1-3: Peptide-Based Cancer Immunotherapy Mechanism
  • Figure 1-4: Dual Pathway Activation Via Peptides
  • Figure 1-5: Peptide Delivery Technologies
  • Figure 1-6: Peptide Combination Therapies
  • Figure 1-7: Peptide Immunotherapy - Challenges vs Solutions
  • Figure 2-1: Benefits of Peptides in Immunotherapy
  • Figure 2-2: Tumor Types & Peptide Targets
  • Figure 2-3: Multifunctional Peptides In Immunotherapy
  • Figure 2-4: Peptide-Based Immunotherapies In Global Health
  • Figure 2-5: Antigen Loss & Immune Escape vs Multi-Epitope Vaccination
  • Figure 3 1: Peptide Cancer Vaccines - Mechanism Of Action
  • Figure 4-1: Tumor-Associated Antigen Sources
  • Figure 4-2: Neoantigen Generation Sources
  • Figure 4-3: Tumor-Associated Antigen vs. Tumor-Specific Antigen-Derived Peptide Vaccines - Microenvironment Impact
  • Figure 4-4: Short Peptides - Pros & Cons
  • Figure 4-5: Long Peptides - Pros & Cons
  • Figure 4-6: Short & Long Peptide Vaccines - Antigen Processing & Presentation Pathways
  • Figure 4-7: CD8+ T Cell Activation Functional Outcomes
  • Figure 4-8: CD4+ T Cell Activation Functional Outcomes
  • Figure 4-9: MHC Class I & II - Antigen Processing Pathways
  • Figure 5-1: SURVIVE Phase II (NCT05163080) Study - Initiation & Estimated Completion Year
  • Figure 5-2: NCI-2015-00694 Phase II (NCT02455557) Study - Initiation & Estimated Completion Year
  • Figure 5-3: CONNECT1906 Phase II (NCT05096481) Study - Initiation & Estimated Completion Year
  • Figure 5-4: PRO13110086 Phase II (NCT02358187) Study - Initiation & Estimated Completion Year
  • Figure 5-5: PRO12050422 Phase I (NCT01795313) Study - Initiation & Estimated Completion Year
  • Figure 5-6: FLAMINGO-01 Phase III (NCT05232916) Study - Initiation & Estimated Completion Year
  • Figure 5-7: Pro00104868 Phase I (NCT04270149) Study - Initiation & Estimated Completion Year
  • Figure 5-8: CTO-IUSCCC-09138 Phase I (NCT06414733) Study - Initiation & Estimated Completion Year
  • Figure 5-9: 16-132 Phase I (NCT02826434) Study - Initiation & Estimated Completion Year
  • Figure 5-10: NCI-2016-01878 Phase II (NCT03012100) Study - Initiation & Estimated Completion Year
  • Figure 5-11: ARTEMIA Phase III (NCT06472245) Study - Initiation & Estimated Completion Year
  • Figure 5-12: PNeoVCA Phase I/II (NCT05269381) Study - Initiation & Estimated Completion Year
  • Figure 5-13: J23120 Phase I/II (NCT05950139) Study - Initiation & Estimated Completion Year
  • Figure 5-14: AMPLIFY-201 Phase I (NCT04853017) Study - Initiation & Estimated Completion Year
  • Figure 5-15: 18-279 Phase I (NCT03929029) Study - Initiation & Estimated Completion Year
  • Figure 5-16: KEYNOTE-D18 Phase III (NCT05155254) Study - Initiation & Estimated Completion Year
  • Figure 5-17: AMPLIFY-7P Phase I/II (NCT05726864) Study - Initiation & Estimated Completion Year
  • Figure 5-18: OBERTO-301 Phase II (NCT05243862) Study - Initiation & Estimated Completion Year
  • Figure 5-19: TEDOPAM Phase II (NCT03806309) Study - Initiation & Estimated Completion Year
  • Figure 5-20: GO-010 Phase II/III (NCT05141721) Study - Initiation & Estimated Completion Year
  • Figure 5-21: AMC-099 Phase III (NCT03284866) Study - Initiation & Estimated Completion Year
  • Figure 5-22: SAHoWMU-CR2024-07-107 Phase II/III (NCT06341907) Study - Initiation & Estimated Completion Year
  • Figure 5-23: GINECO-OV244b Phase II (NCT04713514) Study - Initiation & Estimated Completion Year
  • Figure 6-1: Global Cancer Peptide Vaccine Market - Future Opportunities
  • Figure 8-1: Global - Peptide Cancer Vaccine in Clinical Pipeline by Country, 2025 Till 2030
  • Figure 8-2: Global - Peptide Cancer Vaccine in Clinical Pipeline by Company, 2025 Till 2030
  • Figure 8-3: Global - Peptide Cancer Vaccine in Clinical Pipeline by Indication, 2025 Till 2030
  • Figure 8-4: Global - Peptide Cancer Vaccine in Clinical Pipeline by Phase, 2025 Till 2030
  • Figure 10-1: Global Cancer Peptide Vaccine Market - Market Drivers & Opportunities
  • Figure 10-2: Global Cancer Peptide Vaccine Market - Market Challenges & Limitations
  • Figure 11-1: Cecava - Personalized Neoepitope Peptide Vaccine Platform
  • Figure 11-2: IO Biotech - T-win
  • Figure 11-3: ISA Pharmaceuticals - SLP Technology

List of Tables

  • Table 2-1: Peptide Vaccines vs. Traditional Cancer Vaccines
  • Table 2-2: Gaps In Cancer Treatment Addressed By Peptide Vaccines
  • Table 4-1: Tumor-Associated Antigen vs. Tumor-Specific Antigen-Derived Peptide Vaccines
  • Table 4-2: Short vs Long Peptide Vaccines
  • Table 4-3: Short vs Long Peptide Vaccines - Ideal Candidate Use Scenarios
  • Table 4-4: MHC Class I vs MHC Class II Peptide Vaccines
  • Table 4-5: MHC-I & MHC-II Vaccines - Unique & Overlapping Features