封面
市場調查報告書
商品編碼
1756385

KIF18A標靶治療藥的全球市場:市場趨勢,臨床試驗,技術平台,未來預測(2025年)

Global KIF18A Targeting Therapies Market Trends, Clinical Trials, Technology Platforms & Future Outlook 2025

出版日期: | 出版商: KuicK Research | 英文 75 Pages | 商品交期: 最快1-2個工作天內

價格

"全球 KIF18A 標靶治療市場:市場趨勢、臨床試驗、技術平台及未來展望 (2025)" 報告的亮點與發現:

  • 預計首個 KIF18A 標靶治療將於 2030 年商業化
  • 最高開發階段:I/II 期
  • 臨床試驗中的 KIF18A 標靶治療:>10 種以上療法
  • KIF18A 標靶治療的臨床試驗洞察:按公司、國家、適應症和階段分類
  • KIF18A 標靶治療市場發展趨勢洞察
  • KIF18A 治療技術平台洞察

KIF18A 治療的需求及本報告的意義

KIF18A,一種動力蛋白KIF18A家族馬達蛋白,在有絲分裂過程中對控制染色體排列至關重要。 KIF18A經由移位至動粒微管正端並抑制其伸長,確保細胞分裂前中期板上的染色體排列。這個過程對於染色體正確分離和基因組穩定性至關重要。當KIF18A缺失或失去功能時,細胞通常表現出染色體錯位、分裂延遲和染色體數量異常增加,從而導致基因組不穩定性,這是癌症的常見特徵。 KIF18A在許多癌症中過度表達,包括乳腺癌、卵巢癌、結腸癌和胰腺癌,其高表達與不良預後、轉移和化療抗藥性有關。因此,KIF18A被認為是新型癌症治療的一個有希望的標靶。

KIF18A的治療價值在於其在細胞分裂中的核心功能。靶向 KIF18A 並抑制其運動功能可以破壞有絲分裂,優先殺死癌細胞,同時不損傷正常細胞。標靶依賴精確有絲分裂的癌細胞,比不加區分攻擊所有分裂細胞的傳統化療更具針對性。目前,人們正在探索各種方法來抑制 KIF18A 活性。最直接的策略是開發小分子抑制劑來阻斷 KIF18A 的運動活性,從而導致有絲分裂期間微管動力學失控。透過抑制 KIF18A 在動粒處的功能,這些抑制劑會導致有絲分裂失敗,最終導致癌細胞死亡。

除了抑制運動結構域外,另一種方法是抑制控制 KIF18A 功能的調控路徑。翻譯後修飾,例如磷酸化和與銜接蛋白的結合,可以調節 KIF18A 的定位和活性。幹擾此類調控途徑提供了一種操縱KIF18A活性的策略,並且可能比直接抑制該機制的毒性更小。抑制磷酸化KIF18A的激酶或阻斷其與調控蛋白的相互作用可能是更特異的治療策略。

本報告透過全面分析KIF18A的臨床和分子特徵,重點在於其生物學功能、致癌作用和治療潛力而撰寫。鑑於人們對KIF18A作為潛在藥物靶點的興趣日益濃厚,我們優化了內容,提供基於研究的詳細信息,幫助從研究人員到藥物開發者等利益相關者了解該靶蛋白。我們相信,對KIF18A的廣泛了解是設計針對這種重要癌蛋白的癌症療法的重要基礎。

報告中包含的臨床試驗見解

需要進行臨床試驗來評估新型治療策略(例如針對KIF18A的治療策略)的安全性和有效性。為此,本報告概述了全球範圍內正在開發的KIF18A標靶療法,並詳細介紹了每種療法的臨床適應症、開發階段、臨床試驗發起者和地理位置。這些臨床試驗有望透過產生重要的臨床數據、提高公眾認知度和吸引投資者,對KIF18A標靶療法未來的市場機會方向產生重大影響。

參與KIF18A療法研發的主要公司

目前,多家生技公司處於KIF18A療法開發的前沿,多種化合物處於不同的藥物開發階段。作為該領域的主導力量,Volastra Therapeutics正在開發一系列針對KIF18A的藥物。其最突出的候選藥物之一是索韋尼布(AMG650)。 Sovirnesib 是一種小分子抑制劑,最初由安進公司開發,目前正在進行 I 期臨床試驗,用於治療鉑類抗藥性且難治的高級別漿液性卵巢癌 (HGSOC)。 Volastra 也正在開發一種新型內部研發的口服 KIF18A 抑制劑 VLS-1488,目前正處於 I/II 期臨床試驗階段。這些臨床試驗的初步數據顯示,該抑制劑具有良好的安全性和抗腫瘤活性的早期證據,尤其適用於染色體高度不穩定的腫瘤,這進一步驗證了 KIF18A 抑制劑的治療潛力。

另一家 KIF18A 標靶治療市場參與者 Accent Therapeutics 正在開發一種口服候選藥物 ATX-295,目前正處於 I/II 期臨床試驗階段,用於治療同樣具有染色體不穩定性的實體瘤。 ATX-295 在臨床前試驗中表現出強大的抗腫瘤功效,尤其是在高級別漿液性卵巢癌和三陰性乳癌模型中。 Accent 的方法是利用伴隨生物標記(例如全基因組加倍)來指導患者選擇並提高 KIF18A 抑制的治療指數。

KIF18A 抑制劑的開發正迅速利用人工智慧 (AI) 驅動的藥物發現平台等開發技術。 Insilico Medicine 尤其利用其 AI 驅動的平台來發現和優化新型 KIF18A 抑制劑。 Insilico 的 Chemistry42 和 PandaOmics 平台促成了大環 KIF18A 抑制劑 ISM9682 的發現,該抑制劑在臨床前試驗中表現出高特異性和顯著的抗腫瘤活性。這種基於 AI 的方法正在徹底改變藥物開發,使其能夠更快、更準確地識別有前景的療法。

報告重點介紹了 KIF18A 治療領域的未來發展方向

隨著多個 KIF18A 標靶療法進入臨床試驗階段,該領域前景廣闊。多家公司早期數據顯示,KIF18A 抑制劑能夠選擇性殺死染色體不穩定的癌細胞,使其適用於精準腫瘤治療。強勁的早期數據,加上基於人工智慧的藥物研發和監管支援的進展,表明 KIF18A 標靶療法或將成為治療對常規療法抗藥性的癌症的有效武器。這些療法的療效有望為針對基因組不穩定患者的更有針對性和更有效的治療鋪平道路。

展望未來,由於研發支出的增加、在各類癌症中的應用擴展以及對標靶療法的需求不斷增長,KIF18A 標靶療法領域預計將實現顯著增長。生物技術公司與大型製藥公司之間的策略合作預計將有助於加速商業化進程。隨著更多臨床數據的湧現,市場需求可能會增強,有可能將 KIF18A 抑制劑確立為一類新的精準抗癌藥物。

目錄

第1章 調查手法

第2章 KIF18A標靶治療的簡介

  • 驅動蛋白家族和KIF18A概要
  • 歷史與開發

第3章 科學性·生物學的背景

  • KIF18A概要
  • 致癌性所扮演的角色和治療的根據

第4章 把KIF18A作為標的治療方法

  • 低分子抑制劑
  • RNAi為基礎的策略

第5章 KIF18A標靶治療的各適應症研究開發趨勢

  • 固態腫瘤
  • 造血惡性腫瘤

第6章 KIF18A標靶治療:各類藥物的組合策略

第7章 KIF18A標靶治療市場潛在的概要

  • 目前方案
  • 未來的研究開發與商業機會

第8章 KIF18A標靶治療開發技術平台

第9章 KIF18A標靶治療的臨床試驗概要

  • 各企業
  • 各國
  • 各適應症
  • 各相
  • 優先各狀態

第10章 KIF18A標靶治療的臨床試驗:企業,適應症,各相

  • 研究
  • 前臨床
  • 第一階段
  • 第一/二階段

第11章 KIF18A標靶治療市場動態

  • 促進因素和機會
  • 課題與阻礙因素

第12章 競爭情形

  • Accent Therapeutics
  • Amgen
  • Apeiron Therapeutics
  • Aurigene Oncology
  • Genhouse Bio
  • GeneScience Pharmaceuticals
  • Iambic Therapeutics
  • Innogate Pharma
  • Insilico Medicine
  • Satya Pharma
  • Tailor Bio
  • Volastra

Global KIF18A Targeting Therapies Market Trends, Clinical Trials, Technology Platforms & Future Outlook 2025 Report Highlights & Findings:

  • First KIF18A Targeting Therapy Commercial Availability Expected By 2030
  • Highest Phase Of Development: Phase-I/II
  • KIF18A Targeting Therapies In Clinical Trials: > 10 Therapies
  • KIF18A Targeting Therapies Clinical Trials Insight By Company, Country, Indication & Phase
  • KIF18A Targeting Therapies Market Development Trends Insight
  • KIF18A Therapies Technology Platforms Insight

Need For KIF18A Therapies & Why This Report?

KIF18A, a kinesin family motor protein, is essential for chromosome alignment regulation during mitosis. It acts by moving to the plus ends of kinetochore microtubules and suppressing their elongation, thus ensuring chromosomes are well aligned at the metaphase plate prior to cell division. This process is essential for correct chromosome segregation and genomic stability. When KIF18A is absent or nonfunctional, cells usually have misaligned chromosomes, delayed mitosis, or abnormal chromosome numbers, causing genomic instability, a common feature of cancer. KIF18A is overexpressed in many cancers, such as breast cancer, ovarian cancer, colorectal cancer, and pancreatic cancer, and its high expression is associated with poor prognosis, more metastasis, and chemotherapy resistance. Therefore, KIF18A has been recognized as a promising target for new cancer treatments.

The therapeutic value of KIF18A lies in its central function in cell division. Targeting KIF18A and inhibiting its motor function can interfere with mitosis, killing cancer cells preferentially and leaving normal cells intact. The potential to target cancer cells' dependency on accurate mitosis is a more targeted approach than conventional chemotherapies, which indiscriminately target all dividing cells. There are various approaches being explored to block KIF18A activity. The most direct strategy is the generation of small molecule inhibitors that inhibit KIF18A's motor activity, such that it can no longer control microtubule dynamics during mitosis. By disrupting KIF18A's function at the kinetochore, these inhibitors cause mitotic failure, which results in cancer cell death.

Along with inhibition of the motor domain, another approach is to interfere with the regulatory pathways that govern KIF18A function. Post translational modifications like phosphorylation, and binding to adaptor proteins modulate the localization and activity of KIF18A. Interfering with these regulatory pathways provides a strategy to manipulate KIF18A activity with potentially reduced toxicity over direct motor inhibition. Inhibiting kinases that phosphorylate KIF18A or interfering with its interactions with regulatory proteins might represent a more specific therapeutic strategy.

This report has been developed to offer a comprehensive analysis of clinical and molecular features of KIF18A, focusing on its biological functions, oncogenic roles, and therapeutic potential. Recognizing the increasing interest in KIF18A as a potential drug target, the content has been optimized in a manner that it provides research based, in-depth information that will facilitate stakeholders, from researchers to pharma developers, to grasp the target protein. We believe that an extensive understanding of KIF18A is a critical foundation for designing cancer therapies against this key cancer protein.

Clinical Trials Insight Included In Report

Clinical trials are necessary for assessing the safety and efficacy of new therapeutic strategies, such as those against KIF18A. In line with this, this report comprises an overview of KIF18A targeting therapies being developed globally. It details each therapy's clinical indication, stage of development, trial sponsors, and geographic location. We believe these trials are poised to have a major impact on the direction of future market opportunity for KIF18Atargeting therapies by producing crucial clinical data, raising awareness, and drawing in investors.

Key Companies Involved In R&D Of KIF18A Therapies

Several biotech firms are now at the forefront of developing treatments against KIF18A, with multiple compounds in different stages of drug development. Volastra Therapeutics, a dominant force in this space, has built a wide range of KIF18A targeting drugs. One of its most prominent candidates is Sovilnesib (AMG650), a small molecule inhibitor that was originally developed by Amgen and is currently in Phase I clinical trials for patients with platinum resistant high grade serous ovarian cancer (HGSOC), an aggressive to treat population. Volastra is also developing VLS-1488, a novel oral KIF18A inhibitor developed in-house, now in Phase I/II clinical trials. Initial data from these trials have revealed favorable safety profiles and early evidence of anti tumor effects, especially for tumors with high chromosomal instability, further validating the therapeutic potential of inhibition of KIF18A.

Accent Therapeutics, another player in the KIF18A targeted therapy market, is developing ATX-295, an oral drug candidate, also in Phase I/II trials for solid tumors with chromosomal instability. ATX-295 has demonstrated high preclinical anti tumor efficacy, especially in models of high grade serous ovarian and triple negative breast cancer. Accent's approach is to utilize companion biomarkers, like whole genome doubling, to inform patient selection and enhance the therapeutic index of KIF18A inhibition.

Emerging technologies, including artificial intelligence (AI) facilitated drug discovery platforms, are rapidly being used to develop KIF18A inhibitors. Insilico Medicine, among other firms, utilizes AI driven platforms to discover and optimize novel inhibitors of KIF18A. Insilico's Chemistry42 and PandaOmics platforms facilitated the discovery of ISM9682, a macrocyclic KIF18A inhibitor with high specificity and attractive anti tumor activity in preclinical trials. These AI empowered methods are revolutionizing drug development by allowing faster and more precise identification of prospective therapeutics.

Report Highlighting Future Direction Of The KIF18A Therapies Segment

With multiple KIF18A targeted therapies progressing through clinical trials, the area is highly promising. Early stage data across a number of companies suggest that KIF18A inhibitors can selectively kill cancer cells with chromosomal instability and are thus well suited for precision oncology. The robust initial data, coupled with advances in AI based drug discovery and regulatory backing, indicate that KIF18A targeted therapies may become a valuable weapon in the treatment of those cancers that are refractory to conventional treatments. The efficacy of these therapies is anticipated to pave the way for even more targeted, efficient therapies for patients with genomic instability.

In the future, the KIF18A targeted therapy space is anticipated to see considerable growth due to rising R&D expenditure, growing applications in various cancer types, and heightened demand for targeted therapy. Biotech companies' strategic collaborations with major pharmaceutical companies are expected to help hasten commercialization timelines. As more clinical data emerge, market uptake is also expected to get bolstered and potentially establish KIF18A inhibitors as a new precision oncology class of drugs.

Table of Contents

1. Research Methodology

2. Introduction To KIF18A Targeting Therapies

  • 2.1 Overview of Kinesin Family & KIF18A
  • 2.2 History & Development

3. Scientific & Biological Background

  • 3.1 Overview of KIF18A
  • 3.2 Oncogenic Role & Therapeutic Rationale

4. Therapeutic Approaches Targeting KIF18A

  • 4.1 Small Molecule Inhibitors
  • 4.2 RNAi Based Strategies

5. KIF18A Targeting Therapies R&D Trends By Indication

  • 5.1 Solid Tumors
  • 5.2 Hematological Malignancies

6. KIF18A Targeting Therapies Combination Strategies By Drug Class

7. KIF18A Targeting Therapies Market Potential Overview

  • 7.1 Current Scenario
  • 7.2 Future R&D & Commercial Opportunities

8. KIF18A Targeting Therapies Development Technology Platforms

9. KIF18A Targeting Therapies Clinical Trials Overview

  • 9.1 By Company
  • 9.2 By Country
  • 9.3 By Indication
  • 9.4 By Phase
  • 9.5 By Priority Status

10. KIF18A Targeting Therapies Clinical Trials Insight By Company, Indication & Phase

  • 10.1 Research
  • 10.2 Preclinical
  • 10.3 Phase I
  • 10.4 Phase I/II

11. KIF18A Targeting Therapies Market Dynamics

  • 11.1 Drivers & Opportunities
  • 11.2 Challenges & Restraints

12. Competitive Landscape

  • 12.1 Accent Therapeutics
  • 12.2 Amgen
  • 12.3 Apeiron Therapeutics
  • 12.4 Aurigene Oncology
  • 12.5 Genhouse Bio
  • 12.6 GeneScience Pharmaceuticals
  • 12.7 Iambic Therapeutics
  • 12.8 Innogate Pharma
  • 12.9 Insilico Medicine
  • 12.10 Satya Pharma
  • 12.11 Tailor Bio
  • 12.12 Volastra

List of Figures

  • Figure 2-1: Kinesin Family Overview
  • Figure 2-2: KIF18A - Overview
  • Figure 2-3: Discovery and Evolution of KIF18A Research
  • Figure 3-1: KIF18A - Role In Mitosis
  • Figure 3-2: KIF18A - Expression in Normal & Cancer Tissues
  • Figure 3-3: KIF18A as Therapeutic Target in Cancer
  • Figure 3-4: KIF18A - Synthetic Lethality Pathway
  • Figure 3-5: KIF18A as Prognostic Marker in Cancer
  • Figure 4-1: Small Molecule KIF18A Inhibitors - Mechanism of Action
  • Figure 4-2: RNAi-Mediated Silencing of KIF18A - Mechanism of Action
  • Figure 4-3: KIF18A RNAi - Effects on Tumor Cell Phenotypes
  • Figure 5-1: SOVI-2302 Phase 1 (NCT06084416) Study - Initiation & Completion Year
  • Figure 5-2: VLS-1488-2201 Phase 1/2 (NCT05902988) Study - Initiation & Completion Year
  • Figure 5-3: ATX-295-001 Phase 1/2 (NCT06799065) Study - Initiation & Completion Year
  • Figure 5-4: GH2616-101 Phase 1 (NCT06329206) Study - Initiation & Completion Year
  • Figure 5-5: KIF18A In Hematological Malignancies - Role & Therapeutic Opportunity
  • Figure 7-1: KIF18A Targeting Therapies - Future Opportunities
  • Figure 8-1: Chemistry42 - Insilico Medicine
  • Figure 8-2: CINtech Platform - Volastra Therapeutics
  • Figure 8-3: Unnamed Platform - Accent Therapeutics
  • Figure 8-4: Unnamed Platform - Tailor Bio
  • Figure 9-1: Global - KF18A Targeting Therapies Clinical Trials By Company, 2025
  • Figure 9-2: Global - KF18A Targeting Therapies Clinical Trials By Country, 2025
  • Figure 9-3: Global - KF18A Targeting Therapies Clinical Trials By Indication, 2025
  • Figure 9-4: Global - KF18A Targeting Therapies Clinical Trials By Phase, 2025
  • Figure 9-5: Global - KF18A Targeting Therapies Clinical Trials By Priority Status, 2025
  • Figure 11-1: KIF18A Targeting Therapies Market - Drivers & Opportunities
  • Figure 11-2: KIF18A Targeting Therapies Market - Challenges & Restraints

List of Tables

  • Table 6-1: KIF18A Targeting Therapy In Combination With Chemotherapy
  • Table 6-2: KIF18A Targeting Therapy In Combination With Immunotherapy
  • Table 6-3: KIF18A Targeting Therapy In Combination With Targeted Therapy