封面
市場調查報告書
商品編碼
1532903

LiDAR 感測器市場 - 2024 年至 2029 年預測

LiDAR Sensor Market - Forecasts from 2024 to 2029

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 114 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

LiDAR 感測器市場估計值將從 2024 年的 36.67 億美元增至 2029 年的 76.35 億美元,在預測期內年複合成長率(CAGR)為 15.80%。

為了因應全球人口成長,特別是開發中國家的人口成長,設計和土木建築計畫的規模和範圍顯著增加。建造的各個觀點,從測繪到進行風險可行性研究,都需要增加技術援助。LiDAR創新已發展成為一種有價值的設備,可以對廣大區域提供準確的逐點研究。此外,工程師依靠全球定位系統 (GPS) 驅動的雷射掃描器和高靈敏度相機來創建滿足擴展假設並促進準確的可行性評估的設計。為了因應這一趨勢,各LiDAR供應商正在擴大業務。

印度的目標是鞏固基礎,以實現 2025 年美國金融發展達到 5 兆美元的目標。作為國家基礎設施管道(NIP)的一部分,各種大型計劃目前正處於不同的實施階段。 NIP計畫在2020年至2025年間分配1.4兆美元的大規模風險預算用於基礎設施發展,其中很大一部分分配給各個領域。其中可再生能源項目佔24%,公路及高速公路項目佔18%,都市開發案佔17%,鐵路開發案佔12%。

此外,與石油天然氣和採礦程序等行業的傳統方法相比,科學家和測繪專家正在使用雷射雷達技術來提高準確性、精密度和多功能性,並提高人造和採礦作業的準確性、準確性和多功能性。在印度,運輸部已強制要求在建造新高速公路之前使用LiDAR系統進行測量。

NRSC(國家遙感探測中心)使用兩台航空數位相機,Vexcel 的 ULTRACAM-D 和 ULTRACAM Eagle,可擷取空間解析度高達 5 公分的大尺寸數位相機影像(PAN、RGB、NIR)。此外,NRSC還採用了徠卡的兩款雷射雷達系統:ALS50-II和ALS70-HP。這些系統具有內建數位相機,可與雷射測距並行執行光學成像。兩款裝置的工作波長均為1064nm。這些研究由 NRSC 進行,用於為城市、林業和水文應用創建高精度數位表面模型 (DSM) 和數位地形模型 (DTM),以及為採礦作業和走廊規劃創建精確的體積模型它有多種用途,包括分析、為電子化政府創建2D/3D資料庫以及為規劃目的提供 3D 視覺化。

政府增加對國防能力的投資支持市場擴張

LiDAR 感測器透過提供情境察覺、監視和目標捕獲的先進功能,在國防工業中發揮至關重要的作用。這些感測器利用雷射脈衝在各種環境條件下(包括照度和惡劣天氣場景)準確識別、追蹤和識別物體。在國防應用中,LiDAR 感測器整合到無人機 (UAV)、地面車輛和監視框架中,以組裝有關區域測繪、敵人位置和潛在危險的即時資訊。該技術使軍隊能夠做出快速、明智的選擇,從而提高作戰相關性並提高作戰情況下的整體任務獲勝率。

擬議的國防部 (DoD) 2023 會計年度預算為 7,730 億美元,比 2022 會計年度 7,423 億美元的製裁基準水準增加 307 億美元,即 4.1%,比 2022 會計年度要求的水準增加 8.1%。與 2021 會計年度的水準相比,2023 會計年度的請求在兩年內增加了約 700 億美元(9.8%)。

基於脈衝/線性模式的框架預計將在預期時間內佔據重要的市場佔有率。

線性模式或基於脈衝的 LIDAR(光檢測和測距)系統使用短時雷射脈衝來測量物體與周圍環境的距離。這些系統支援即時障礙物識別和安全導航,包括無人駕駛汽車等多種應用。

基於脈衝的雷射雷達是自動駕駛汽車 (AV) 查看環境並即時偵測阻礙力、行人和其他車輛的基礎。擴大自動駕駛創新取決於這種確保安全路線和高效防撞程序的能力。例如,2023 年 10 月,英國政府保證額外供應 1 億英鎊,以支援自動駕駛汽車 (AV) 的逐步改進。其當前的安全目標是讓自動駕駛汽車與熟練的人類協調員一樣安全。

此外,交通運輸洞察局預計汽車產量將從 2020 年的 8,818,000 輛增加到 2021 年的 9,157,000 輛。此外,國內銷量將從2020年的11,571,000輛增加到2021年的11,831,000輛。這一成長對整體市場擴張產生了重大影響。

基於脈衝的雷射雷達還可用於環境監測、土木工程計劃、考古調查、精密農業和農業作物監測。基於脈衝的雷射雷達的準確性和適應性使其成為提高快速決策和推進各個領域技術的重要工具。

根據 MGI(2011)的數據,到 2030 年,城市預計將佔印度 GDP 的 70%。

印度建築市場分為250子部門,每個產業之間都有連結。為了開創印度建築技術產業的新時代,PMAY-U 提交的材料選出了 54 項全球創新建築技術。在 SBM-U 框架下,1,191 個城市獲得了 ODF++ 認證,超過 3,500 個城市獲得了 ODF+ 認證。擬建的 35 個多式聯運物流園區 (MMLP) 總資本支出達 61 億美元,將處理 50% 的貨運量。

在其他領域,在軍事領域,基於脈衝或線性模式的 LIDAR 設備可提供精確的 3D 空間資料,從而實現先進的目標識別和偵察能力。這些設備透過幫助準確識別和追蹤感興趣的項目來提高情境察覺和任務規劃。此外,基於脈衝的雷射雷達增強了地理亮點的測繪,提高了軍事行動和關鍵決策的可行性。

此外,根據中央情報局的報告,2021 年阿根廷的軍事支出佔 GDP 的 0.8%,2019 年佔 GDP 的 0.7% 左右。這筆支出主要用於設備中使用的感測器。

總體而言,由於國防、農業和汽車行業等各個行業的需求不斷成長,脈衝或線性模式雷射雷達系統市場正在迅速擴大。此外,技術發展正在提高效率並降低價格,為公司提供提供創新產品和擴大產品範圍的重大機會。

主要市場開拓:

  • 2022 年 1 月,美國專利商標局授予 Woolpert 一項「機載 Topo-Bathy 雷射雷達系統及其方法」專利。有吸引力的研究和開發團隊正在利用這些創新來開發雷射雷達,它可以覆蓋更廣泛的範圍,並在比最近構建的感測器框架更明顯的高度處收集高解析度地形和測深資訊。

目錄

第1章簡介

  • 市場概況
  • 市場定義
  • 調查範圍
  • 市場區隔
  • 貨幣
  • 先決條件
  • 基準年和預測年時間表
  • 相關人員的主要利益

第2章調查方法

  • 研究設計
  • 調查過程

第3章執行摘要

  • 主要發現
  • 分析師觀點

第4章市場動態

  • 市場促進因素
  • 市場限制因素
  • 波特五力分析
  • 產業價值鏈分析

第5章 LiDAR 感測器市場:按感測器類型

  • 介紹
  • 空氣
    • 地形
    • 水深
  • 地上
    • 智慧型手機
    • 靜止的

第6章 LiDAR 感測器市場:依系統類型

  • 介紹
  • 脈衝基/線性模式系統
  • 基於相位的系統
  • 蓋格模式/光子計數系統

第7章 LiDAR 感測器市場:依產業分類

  • 介紹
  • 農業
  • 基礎設施/建築
  • 軍事/國防
  • 環境
  • 礦業
  • 運輸
  • 其他

第8章 LiDAR 感測器市場:按地區

  • 介紹
  • 北美洲
    • 依感測器類型
    • 依系統類型
    • 按行業分類
    • 按國家/地區
  • 南美洲
    • 依感測器類型
    • 依系統類型
    • 按行業分類
    • 按國家/地區
  • 歐洲
    • 依感測器類型
    • 依系統類型
    • 按行業分類
    • 按國家/地區
  • 中東/非洲
    • 依感測器類型
    • 依系統類型
    • 按行業分類
    • 按國家/地區
  • 亞太地區
    • 依感測器類型
    • 依系統類型
    • 按行業分類
    • 按國家/地區

第9章競爭環境及分析

  • 主要企業及策略分析
  • 市場佔有率分析
  • 合併、收購、協議和合作
  • 競爭對手儀表板

第10章 公司簡介

  • SICK AG
  • Infineon Technologies AG
  • Leica Geosystems AG
  • Velodyne LiDAR, Inc.
  • Quanergy Systems, Inc.
  • Hitachi, Ltd.
  • LeddarTech Inc.
  • Neptec Technologies Corp
  • Innoviz Technologies, Ltd.
簡介目錄
Product Code: KSI061611571

The LiDAR Sensor market is anticipated to grow at a compound annual growth rate (CAGR) of 15.80% over the forecast period to reach US$7.635 billion by 2029, increasing from estimated value of US$3.667 billion in 2024.

There has been a noteworthy rise in the scale and degree of designing and civil construction ventures to oblige the growing population on the global scale, especially in developing nations. Each perspective of construction, extending from surveying and mapping to carrying out venture achievability studies, requires an expanding level of technological help. LiDAR innovations have developed as a profitable device, offering exact and point-by-point studies of tremendous regions. Besides, engineers depend on global positioning system (GPS)-aided laser scanners and profoundly delicate cameras to create designs that meet extended prerequisites and encourage precise possibility assessments. As a result of this drift, various LiDAR benefit providers have extended their operations.

India is aiming to boost its foundation to attain its financial development target of coming to US$5 trillion by 2025. As part of the National Infrastructure Pipeline (NIP), there are various large-scale projects right now in different stages of execution. The NIP designates a significant venture budget of $1.4 trillion towards foundation advancement, from 2020 to 2025, with a noteworthy portion designated to different segments. This incorporates 24% towards renewable energy ventures, 18% towards roads and highways, 17% towards urban development, and 12% towards railways development.

Further, LiDAR technology is utilized by scientists and mapping experts to analyze both artificial and natural landscapes with increased accuracy, precision, and versatility compared to previous methods in industries like oil and gas as well as in mining procedures. In India, the Ministry of Transportation has made it compulsory to utilize LiDAR systems for surveying areas prior to the construction of new highways.

The NRSC (National Remote Sensing Centre) utilizes two airborne digital cameras, namely the ULTRACAM-D and ULTRACAM Eagle manufactured by Vexcel, which are capable of capturing and delivering Large Format Digital Camera images (PAN, RGB, NIR) with spatial resolutions of up to 5 cm. Moreover, NRSC employed two LiDAR systems, namely the ALS50-II and ALS70-HP airborne laser scanners manufactured by Leica. These systems are equipped with integrated digital cameras to facilitate optical imaging alongside laser ranging. The operating wavelength for both instruments is 1064nm. These surveys conducted by NRSC serve various purposes, such as generating high-precision Digital Surface Models (DSM) and Digital Terrain Models (DTM) for urban, forestry, and hydrological applications, conducting accurate volumetric analysis for mining operations and corridor planning, generating 2D/3D Geodatabases for eGovernance, and providing 3D visualization for planning purposes.

Rising government investment in defense capabilities will bolster the market expansion

LiDAR sensors play a pivotal part within the defense industry by giving progressed capabilities for situational awareness, surveillance, and target procurement. These sensors utilize laser pulses to precisely identify, track, and recognize objects in different environmental conditions, including low-light and adverse climate scenarios. In defense applications, LiDAR sensors are coordinated into unmanned aerial vehicles (UAVs), ground vehicles, and surveillance frameworks to assemble real-time information on territory mapping, enemy positions, and potential dangers. This technology enables military faculty to make informed choices quickly, improve operational adequacy, and progress overall mission victory rates in combat circumstances.

The proposed budget for the Department of Defence (DoD) for FY 2023 is $773 billion, reflecting a $30.7 billion or 4.1 percent rise from the sanctioned base level of $742.3 billion in the FY 2022 and an 8.1 percent increment from the asked level in FY 2022. In comparison to the FY 2021 level, the FY2023 demand demonstrates an expansion of about $70 billion (9.8 percent) over a two-year span.

The pulse-based/linear-mode framework is anticipated to hold a substantial market share within the anticipated period.

A linear-mode or pulse-based LIDAR (light detection and ranging) system measures an object's distance from its surroundings by using brief laser pulses. Real-time obstacle identification and safe navigation are made possible by these systems which include diverse utilization such as driverless vehicles.

Pulse-based LIDAR is fundamental for autonomous vehicles (AVs) to see their environment and detect deterrents, pedestrians, and other vehicles in real-time. The expanding progression of self-driving innovation depends on this capacity, which ensures a secure route and productive collision avoidance procedures. For instance, in October 2023, the UK government guaranteed to supply an extra £100 million to back the progressing improvement of autonomous vehicles (AVs). The objective of its current security aim is for self-driving cars to be just as secure as a skilled human driver.

Besides, as per the estimates given by the Bureau of Transportation Insights, motor vehicle production expanded from 8,818 thousand in 2020 to 9,157 thousand in 2021. Moreover, domestic sales accounted increase from 11,571 thousand in 2020 to 11,831 thousand in 2021. This rise significantly impacts the overall market expansion.

Pulse-based LIDAR also helps with environmental monitoring, civil engineering projects, archaeological surveys, and precision farming and crop monitoring in agriculture. Pulse-based LIDAR's accuracy and adaptability make it a vital tool for a variety of sectors, s, improving quick decision making as well as advancing technology.

According to MGI (2011), cities are predicted to produce 70% of India's GDP by 2030.

India's construction market is divided into 250 subsectors and has connections between them. To usher in a new age in the Indian building technology industry, a sub-mission of PMAY-U has selected 54 globally innovative construction technologies. Under SBM-U, 1,191 localities have received ODF++ certification and over 3,500 cities have received ODF+ certification. 35 Multimodal Logistics Parks (MMLPs), which will be built at a total capital expenditure of $6.1 billion, will handle 50% of freight traffic.

Besides that, in the military, pulse-based or linear-mode LIDAR devices provide accurate 3D spatial data, enabling sophisticated target identification and reconnaissance capabilities. These devices improve situational awareness and mission planning by helping to accurately identify and track items of interest. Besides, pulse-based LIDAR bolsters the mapping of geographical highlights, which improves military operations' operational viability and vital decision-making.

Further, as per the Central Intelligence Agency report, Argentina's Military Spending was 0.8% of GDP in the year 2021 which was about 0.7% of GDP in 2019. The spending is majorly focused on the sensors being used in the equipment.

Overall, the pulse-based or linear-mode LIDAR systems market is expanding rapidly due to rising demand from a variety of industries, including the defense, agricultural, and automotive sectors. Furthermore, technological developments are increasing efficiency and lowering prices, giving businesses great chances to innovate and broaden their product offers.

Key Market Development:

  • In January 2022, the United States Patent and Trademark Office awarded Woolpert a patent for his "Airborne Topo-Bathy Lidar System and Methods Thereof." An intriguing research and development group utilized these innovations to make a lidar sensor framework that can assemble high-resolution topographic and bathymetric information at a more prominent elevation, covering a more extensive range than lidar systems that have been built sometime recently.

Market Segmentation:

The Lidar Sensor Market is segmented and analyzed as below:

By Sensor Type

  • Airborne
  • Topographic
  • Bathymetric
  • Terrestrial
  • Mobile
  • Static

By System Type

  • Pulse-based/Linear-mode System
  • Phase-based System
  • Geiger-mode/Photon-counting System

By Industry

  • Agriculture
  • Infrastructure and Construction
  • Military and Defence
  • Environment
  • Mining
  • Transport
  • Others

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • Japan
  • China
  • India
  • Australia
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key benefits for the stakeholders

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. Analyst View

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis

5. LIDAR SENSOR MARKET BY SENSOR TYPE

  • 5.1. Introduction
  • 5.2. Airborne
    • 5.2.1. Topographic
    • 5.2.2. Bathymetric
  • 5.3. Terrestrial
    • 5.3.1. Mobile
    • 5.3.2. Static

6. LIDAR SENSOR MARKET BY SYSTEM TYPE

  • 6.1. Introduction
  • 6.2. Pulse-based/Linear-mode System
  • 6.3. Phase-based System
  • 6.4. Geiger-mode/Photon-counting System

7. LIDAR SENSOR MARKET BY INDUSTRY

  • 7.1. Introduction
  • 7.2. Agriculture
  • 7.3. Infrastructure and Construction
  • 7.4. Military and Defence
  • 7.5. Environment
  • 7.6. Mining
  • 7.7. Transport
  • 7.8. Others

8. LIDAR SENSOR MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Sensor Type
    • 8.2.2. By System Type
    • 8.2.3. By Industry
    • 8.2.4. By Country
      • 8.2.4.1. United States
      • 8.2.4.2. Canada
      • 8.2.4.3. Mexico
  • 8.3. South America
    • 8.3.1. By Sensor Type
    • 8.3.2. By System Type
    • 8.3.3. By Industry
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
      • 8.3.4.2. Argentina
      • 8.3.4.3. Others
  • 8.4. Europe
    • 8.4.1. By Sensor Type
    • 8.4.2. By System Type
    • 8.4.3. By Industry
    • 8.4.4. By Country
      • 8.4.4.1. United Kingdom
      • 8.4.4.2. Germany
      • 8.4.4.3. France
      • 8.4.4.4. Italy
      • 8.4.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. By Sensor Type
    • 8.5.2. By System Type
    • 8.5.3. By Industry
    • 8.5.4. By Country
      • 8.5.4.1. Saudi Arabia
      • 8.5.4.2. UAE
      • 8.5.4.3. Israel
      • 8.5.4.4. Others
  • 8.6. Asia Pacific
    • 8.6.1. By Sensor Type
    • 8.6.2. By System Type
    • 8.6.3. By Industry
    • 8.6.4. By Country
      • 8.6.4.1. Japan
      • 8.6.4.2. China
      • 8.6.4.3. India
      • 8.6.4.4. Australia
      • 8.6.4.5. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. SICK AG
  • 10.2. Infineon Technologies AG
  • 10.3. Leica Geosystems AG
  • 10.4. Velodyne LiDAR, Inc.
  • 10.5. Quanergy Systems, Inc.
  • 10.6. Hitachi, Ltd.
  • 10.7. LeddarTech Inc.
  • 10.8. Neptec Technologies Corp
  • 10.9. Innoviz Technologies, Ltd.