封面
市場調查報告書
商品編碼
1425087

數位造船廠市場:預測(2024-2029)

Digital Shipyard Market - Forecasts from 2024 to 2029

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 147 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

2022 年數位船廠市場價值為 13.24 億美元。

全球數位化船廠的概念代表著造船業形勢的關鍵變革,代表著尖端數位技術的全面同化。這種同化為整個造船生命週期(從初始設計階段到建造和後續維護階段)無與倫比的效率提升鋪平了道路。利用 3D 列印、虛擬實境模擬、人工智慧等先進數位工具的力量,將成為多方面進步的催化劑。特別是,3D列印的應用是變革傳統製造流程的基石,促進複雜海洋零件的精密製造,同時減少對集中方法的依賴。同樣,虛擬實境整合可以模擬複雜的船舶設計,確保在實體建造開始之前進行徹底的測試和檢驗,從而減少潛在的錯誤和低效率。此外,戰略性部署人工智慧將允許無縫分析大量資料並最佳化造船流程的關鍵方面。世界數位化造船廠的出現作為造船業的革命性趨勢,不僅意味著業務效率的飆升,而且還預示著行業前所未有的成長和開創性的進步。這是毫無疑問的。

介紹

全球數位造船廠市場(包括將數位技術融入造船業)預計在可預見的未來將大幅成長。這項預計的擴張主要是由於全球對貨船的需求迅速成長以及最佳化和簡化造船流程的迫切需求。特別是,市場分為兩個不同的類別:軍用造船廠和商業造船廠,所採用的技術包括人工智慧、巨量資料分析、機器人流程自動化、增強智慧、虛擬實境、數位雙胞胎、區塊鏈和工業造船廠。涵蓋廣泛的主題,包括物聯網。此外,市場根據數位化程度進行分層,並分為半規模和全規模數位化造船廠,每個造船廠都滿足特定的行業需求。預測表明,由於海上貿易活動的不斷擴大,商業領域將主導市場。其中包括埃森哲、Altair Engineering Inc.、Aras、AVEVA Group Plc、BAE Systems Plc、Damen Shipyards Group、Dassault Systems、Hexagon AB、iBASEt、Inmarsat Global Limited、Crandon Production Systems BV、Kreyon Systems Pvt.Ltd.、Pemamek OY , PROSTEP AG、SAP SE、西門子、瓦錫蘭等主要企業都在積極進軍數位船廠領域。從地理上看,亞太地區已成為領跑者,佔據數位船廠最大的區域市場。這項市場研究報告對該行業進行了全面分析,重點關注主要企業、船廠類型、技術平台以及數位船廠的數位化程度等關鍵因素。這些報告對於希望了解數位造船廠市場的細微差別和動態的相關人員和市場參與企業來說將是寶貴的資源。

促進因素

  • 貨船需求不斷增加:隨著海運貿易的持續激增,世界對貨船的需求大幅增加,促使造船業對技術進步的迫切需求。將尖端數位技術融入造船流程不僅有可能簡化和最佳化複雜的建造階段,而且還提供了降低營運成本和提高整體營運效率的寶貴機會。利用先進設計軟體、精密製造技術和自動化組裝流程等數位工具,不僅可以加快生產進度,還可以創造出符合現代航運業不斷發展的標準的更堅固、更環保的產品。永續船舶的發展。此外,即時監控系統和資料分析的整合將顯著改善維護通訊協定並確保船舶的使用壽命和可靠性,從而在全球範圍內建立更具彈性和競爭力的海上運輸網路。
  • 環境問題:雖然航運是全球貿易和商業的重要組成部分,但人們早已註意到它是碳排放的重要來源,也是造成環境退化和氣候變遷的主要因素。傳統石化燃料動力來源船舶一直是這方面的主要貢獻者。然而,創新數位技術的整合,包括數位雙胞胎技術的突破性概念,為減少與海運相關的負面環境影響提供了一個有前景的方法。透過採用數位雙胞胎(實體資產的虛擬複製品),航運公司可以提高營運效率、最佳化船舶性能並最大限度地減少燃料消耗。此技術實現的即時監控、預測性維護和進階模擬不僅可以簡化物流流程,還可以促進更準確的能源管理,從而顯著減少航運業產生的碳足跡。
  • 採用數位雙胞胎技術:數位雙胞胎技術本質上是實體資產的精確數位複製品,是類比和微調該資產性能的強大工具。透過建立準確反映實體資產規格和特徵的虛擬副本,數位雙胞胎技術可以全面了解資產的行為和功能。它利用先進的計算模型,為各種模擬和分析提供了一個動態平台,以幫助識別潛在的低效率和需要改進的領域。該技術在造船領域引起了廣泛關注,其整合可以簡化和最佳化船舶建造中涉及的複雜流程。數位雙胞胎技術的應用使造船廠能夠減少潛在的錯誤和誤算風險,最終提高整個造船過程的效率和品質。
  • 技術進步:突破性數位技術的快速發展和整合,包括複雜的人工智慧系統、最先進的巨量資料分析工具和身臨其境型增強智慧應用,正在為造船領域的變革性增強鋪平道路。張大。這些創新的數位解決方案有可能徹底改變造船過程的許多方面,從最初的設計和規劃階段到建造、測試和維護階段。透過利用人工智慧演算法,造船商可以簡化複雜的任務,最佳化資源分配,並在整個製造過程中提供精確的品管。此外,全面的巨量資料分析使收集、分析和解釋大量複雜的資料變得更加容易,從而幫助做出明智的決策、主動管理風險並識別潛在的效能瓶頸。此外,擴增實境(AR)技術的整合使造船團隊能夠即時可視化複雜的設計概念,進行身臨其境型訓練模擬,並增強現場協作,使他們更加精簡和高效。培育有針對性的協作造船生態系統。
  • 自動化的興起:事實證明,造船業中機器人流程自動化 (RPA) 的實施是一種變革性方法,可顯著減少對體力勞動的需求並顯著提高準確性。這種先進自動化技術的整合顯著降低了營運成本,主要是由於減少了對人力資源的需求,同時促進了造船過程的整體效率的空前提高。透過將重複性和集中任務轉移給機器人系統,造船商可以專注於建造過程中更複雜和付加附加價值的方面,從而加快生產進度並達到更高的標準,並確保品管。這種理性的造船方法不僅可以增強造船公司的競爭力,而且還可以適應快速變化的全球市場的現代需求,為航運業的更廣泛發展做出貢獻。

主要企業提供的產品

  • AVEVA 的船舶營運解決方案透過自動化任務、提供即時洞察並實現更好的協作,幫助船東和營運商提高業務效率。
  • 達梭系統幫助造船廠實現工作自動化、改善溝通與協作並最佳化生產流程。

全球數位造船廠市場商業領域顯著成長:

在全球數位造船廠市場中,商業領域預計將顯著成長。這種快速成長是由商業船廠日益數位化推動的,這使商業船東和營運商能夠有效控制生命週期成本,積極進行資本重組,並改進建造程序。您現在可以簡化營運,增強營運可用性,並最大限度地減少整體成本與船舶營運相關的管理費用。預測表明,私營部門將在市場上佔據主導地位,這主要是由於對貨船的需求不斷成長以及最佳化造船流程的迫切需求。隨著海上貿易的擴大,貨船的需求迅速增加,數位技術在造船中的整合程度不斷提高。這種整合有助於簡化業務、降低成本並提高整體業務效率。此外,數位雙胞胎技術的採用預計將在商業領域中利用,並有助於減少航運業造成的碳足跡。市場分為半數位化造船廠和全數位化造船廠,這些細分市場顯示產業內數位化程度不同。

預計亞太地區將佔據全球數位造船廠市場的主要佔有率:

由於各種因素,預計亞太地區將佔據全球數位造船廠市場的很大一部分。特別是,該地區多年來經濟快速成長,海上貿易活動大幅增加。由於對各種製程複雜性、快速交付、降低成本和嚴格監管標準的需求不斷增加,預計在預測期內將出現進一步成長,特別是在印度和中國等新興經濟體。亞太地區是重要的造船中心,中國、韓國、日本等強國引領市場。隨著該地區造船業的持續蓬勃發展,實施數位化船廠解決方案對於簡化業務、最佳化資源和有效應對不斷成長的船舶需求至關重要。由於疫情造成的勞動力短缺,造船自動化的需求激增。在此背景下,數位化船廠解決方案應運而生,成為亞太地區造船業的關鍵資產,可有效緩解勞動力短缺帶來的挑戰,並促進自動化能力的提高,從而提高整體生產力。

市場開拓:

  • 2022 年 11 月,達梭系統與三星重工 (SHI) 合作,利用數位雙胞胎技術開發智慧造船廠。此次合作將改變 SHI 造船廠的營運並支持公司的業務目標。
  • 2021 年 2 月。達門造船集團將與 Sea Machines Robotics 合作,在達門船舶上開發和實施防撞技術。這項合作關係支持達門的數位化、永續性和卓越營運的策略目標。

目錄

第1章簡介

  • 市場概況
  • 市場定義
  • 調查範圍
  • 市場區隔
  • 貨幣
  • 先決條件
  • 基準年和預測年時間表

第2章調查方法

  • 調查資料
  • 調查過程

第3章執行摘要

  • 研究亮點

第4章市場動態

  • 市場促進因素
  • 市場限制因素
  • 波特五力分析
  • 產業價值鏈分析

第5章全球數位造船廠市場:依船廠類型

  • 介紹
  • 商業的
  • 軍隊

第6章全球數位造船廠市場:依技術分類

  • 介紹
  • AR&VR
  • 數位雙胞胎與仿真
  • 人工智慧和巨量資料分析
  • 機器人流程自動化
  • 雲端運算
  • 區塊鏈
  • 其他

第7章全球數位造船廠市場:依容量分類

  • 介紹
  • 大的
  • 期間~
  • 小的

第8章全球數位造船廠市場:依數位化水平分類

  • 介紹
  • 滿的
  • 部分的

第9章全球數位造船廠市場:依最終用戶分類

  • 介紹
  • 執行
  • 升級和服務

第10章全球數位造船廠市場:按地區

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 其他
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 以色列
    • 其他
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 韓國
    • 印尼
    • 泰國
    • 其他

第11章競爭環境及分析

  • 主要企業及策略分析
  • 市場佔有率分析
  • 合併、收購、協議和合作

第12章 公司簡介

  • IBM
  • Accenture
  • Dassault systems
  • Siemens AG
  • PROSTEP INC
  • Daman shipyard group
  • AVEVA Group Plc
簡介目錄
Product Code: KSI061616194

The digital shipyard market was valued at US$1.324 billion in 2022.

The concept of a Global Digital Shipyard marks a pivotal transformation in the landscape of the shipbuilding industry, denoting the comprehensive assimilation of cutting-edge digital technologies. This assimilation paves the way for an unparalleled enhancement in the efficiency of the entire shipbuilding lifecycle, spanning from the initial design phase to the construction and subsequent maintenance stages. Leveraging the prowess of advanced digital tools, encompassing the likes of 3D printing, virtual reality simulations, and artificial intelligence, serves as a catalyst for multifaceted advancements. Notably, the application of 3D printing stands as a cornerstone in revolutionizing the traditional manufacturing process, facilitating the precise fabrication of intricate ship components while concurrently curbing the reliance on labour-intensive methods. Similarly, the integration of virtual reality enables the emulation of intricate ship designs, facilitating thorough testing and validation well before the commencement of the physical construction, thus mitigating potential errors and inefficiencies. Additionally, the strategic deployment of artificial intelligence aids in the seamless analysis of copious amounts of data, thereby enabling the optimization of critical facets of the shipbuilding process. Undoubtedly, the emergence of the Global Digital Shipyard as an innovative trend within the shipbuilding domain signals not only a surge in operational efficacy but also harbours the promise of unprecedented growth and pioneering advancements within the industry.

Introduction:

The Global Digital Shipyard market, which encompasses the integration of digital technologies into the shipbuilding sector, is poised for substantial growth in the foreseeable future. This anticipated expansion is primarily attributed to the surging global demand for cargo ships, coupled with the pressing need for the optimization and streamlining of the shipbuilding processes. Notably, the market is bifurcated into distinct categories, namely military and commercial shipyards, with the technologies employed spanning an extensive array, including artificial intelligence, big data analytics, robotic process automation, augmented reality, virtual reality, digital twin, blockchain, and the industrial Internet of Things. Furthermore, the market is stratified based on the level of digitalization, distinguishing between semi and fully digital shipyards, each catering to specific industry requirements. Projections indicate that the commercial segment is poised to dominate the market owing to the relentless expansion of maritime trade activities. Notably, an impressive roster of key market players is actively engaged in the digital shipyard sphere, including prominent names such as Accenture, Altair Engineering Inc., Aras, AVEVA Group Plc, BAE Systems Plc, Damen Shipyards Group, Dassault Systems, Hexagon AB, iBASEt, Inmarsat Global Limited, Crandon Production Systems BV, Kreyon Systems Pvt. Ltd., Pemamek OY, PROSTEP AG, SAP SE, Siemens, and Wartsila. Geographically, the Asia-Pacific region emerges as the frontrunner, representing the largest regional market for Digital Shipyard. The market research reports furnish comprehensive analyses of the industry, with a keen focus on critical elements such as key players, shipyard types, technology platforms, and the degree of digitalization within digital shipyards. These reports serve as valuable resources for stakeholders and industry participants seeking to grasp the nuances and dynamics of the Digital Shipyard market.

Drivers:

  • Increase in demand for cargo ships: With the continuous surge in maritime trade, the global demand for cargo ships has witnessed a remarkable upsurge, prompting a crucial need for technological advancements in the shipbuilding industry. Integrating cutting-edge digital technologies in the shipbuilding process not only holds the potential to streamline and optimize the intricate stages of construction but also presents a viable opportunity to curtail operational costs and enhance overall operational efficiency. Leveraging digital tools such as advanced design software, precision manufacturing techniques, and automated assembly processes can not only expedite the production timeline but also contribute to the development of more robust and environmentally sustainable vessels, aligning with the evolving standards of the modern shipping industry. Moreover, the integration of real-time monitoring systems and data analytics can significantly improve maintenance protocols, ensuring the longevity and reliability of the vessels, thereby establishing a more resilient and competitive maritime transport network on a global scale.
  • Environmental concerns: The shipping industry, a vital component of global trade and commerce, has long been identified as a substantial source of carbon emissions, contributing significantly to environmental degradation and climate change. Vessels powered by conventional fossil fuels have traditionally been a major culprit in this regard. However, the integration of innovative digital technologies, including the revolutionary concept of digital twin technology, offers a promising avenue to mitigate the adverse environmental impact associated with maritime transportation. By employing digital twins, which are virtual replicas of physical assets, shipping companies can enhance operational efficiency, optimize vessel performance, and minimize fuel consumption. Real-time monitoring, predictive maintenance, and advanced simulations enabled by this technology not only streamline logistical processes but also facilitate more precise energy management, leading to a notable reduction in the carbon footprint generated by the shipping industry. This transformative shift toward digitalization underscores a proactive approach to sustainable practices within the maritime sector, fostering a greener future for global shipping operations.
  • Adoption of digital twin technology: Digital twin technology, essentially a precise digital replica of a physical asset, serves as a powerful tool for simulating and fine-tuning the performance of the asset in question. By creating a virtual counterpart that mirrors the exact specifications and characteristics of the physical asset, digital twin technology enables a comprehensive understanding of the asset's behaviour and functionality. Leveraging advanced computational models, it offers a dynamic platform for conducting various simulations and analyses, thus facilitating the identification of potential inefficiencies and areas for improvement. This technology has garnered significant attention in the context of shipbuilding, where its integration can streamline and optimize the complex processes involved in constructing vessels. Through the application of digital twin technology, shipbuilders can mitigate the potential risks of errors and miscalculations, ultimately enhancing the overall efficiency and quality of the shipbuilding process.
  • Technological advancements: The rapid advancement and integration of groundbreaking digital technologies, including sophisticated artificial intelligence systems, cutting-edge big data analytics tools, and immersive augmented reality applications, have significantly paved the way for transformative enhancements within the shipbuilding domain. These innovative digital solutions have the potential to revolutionize various aspects of the shipbuilding process, ranging from the initial design and planning phases to the construction, testing, and maintenance stages. By leveraging artificial intelligence algorithms, shipbuilders can streamline intricate tasks, optimize resource allocation, and ensure precise quality control throughout the manufacturing process. Additionally, the utilization of comprehensive big data analytics enables the collection, analysis, and interpretation of vast amounts of complex data, facilitating informed decision-making, proactive risk management, and the identification of potential performance bottlenecks. Furthermore, the integration of augmented reality technologies empowers shipbuilding teams to visualize intricate design concepts in real time, conduct immersive training simulations, and enhance on-site collaboration, thereby fostering a more streamlined, efficient, and collaborative shipbuilding ecosystem.
  • Rise in automation: The implementation of robotic process automation (RPA) within the shipbuilding industry has proven to be a transformative approach, facilitating a significant reduction in the necessity for manual labor and a notable enhancement in precision. This integration of advanced automation technologies has consequently led to a noteworthy decrease in operational costs, primarily attributed to the reduced requirement for human resources, while concurrently fostering an unparalleled increase in the overall efficiency of the shipbuilding process. By delegating repetitive and labour-intensive tasks to robotic systems, shipbuilders can focus on more intricate and value-adding aspects of the construction process, thereby expediting production timelines and ensuring a higher standard of quality control. This streamlined approach to shipbuilding not only bolsters the competitive edge of shipbuilding companies but also contributes to the broader evolution of the maritime industry, as it adapts to the modern demands of a rapidly changing global market.

Products offered by key companies:

  • AVEVA's ship operations solutions can help ship owners and operators to improve the efficiency of their operations by automating tasks, providing real-time insights, and enabling better collaboration.
  • Dassault Systems can help shipyards to automate tasks, improve communication and collaboration, and optimize their production processes.

Prominent growth in the commercial segment within the global digital shipyard market:

The commercial segment is poised to witness substantial growth within the Global Digital Shipyard market. This upsurge can be attributed to the progressive digitalization of commercial shipyards, which has enabled commercial ship owners and operators to effectively curtail lifecycle costs, actively pursue capital enhancements, streamline construction procedures, bolster operational availability, and minimize overall overhead expenses related to ship operation. Forecasts indicate that the commercial segment will assert its dominance in the market, primarily propelled by the escalating demand for cargo ships and the pressing need to optimize the shipbuilding process. With the escalation of maritime trade, there has been a notable surge in the requisition for cargo ships, prompting an increased integration of digital technologies in shipbuilding. This integration serves to streamline operations, curtail costs, and amplify overall operational efficiency. Moreover, the commercial segment is anticipated to leverage the adoption of digital twin technology, thereby contributing to the reduction of the carbon footprint engendered by the shipping industry. As the market is segmented into semi and fully digital-shipyards, these divisions are indicative of the diverse degrees of digitalization embraced within the industry.

The Asia Pacific region is expected to hold a significant share of the global digital shipyard market:

The Asia Pacific region is anticipated to dominate a substantial portion of the global digital shipyard market owing to a multitude of factors. Notably, this region has undergone rapid economic expansion over the years, fostering a significant upsurge in maritime trade activities. As the demand for advancements in various processes, expeditious deliveries, cost reduction, and stringent regulatory standards escalates, it is projected to witness further growth during the forecast period, particularly in emerging economies such as India and China. The Asia Pacific region stands as a pivotal center for shipbuilding, with leading market positions held by prominent countries such as China, South Korea, and Japan. As the shipbuilding industry continues to thrive in this region, the call for digital shipyard solutions becomes imperative to streamline operations, optimize resources, and effectively meet the mounting demand for ships. A notable surge in demand for shipbuilding automation has been observed in response to the labor scarcity that transpired during the pandemic. In this context, digital shipyard solutions have emerged as a crucial asset, facilitating automation capabilities that effectively mitigate the challenges posed by labour shortages and consequentially augment overall productivity within the Asia Pacific shipbuilding industry.

Market developments:

  • In November 2022, Dassault Systemes and Samsung Heavy Industries (SHI) partnered to develop a smart shipyard using digital twin technologies. This collaboration will transform SHI's shipyard operations and support its business goals.
  • In February 2021. Damen Shipyards Group has partnered with Sea Machines Robotics to develop and implement collision avoidance technology on Damen ships. This partnership supports Damen's strategic goals of digitalization, sustainability, and operational excellence.

Segments

By Shipyard Type

  • Commercial
  • Military

By Technology

  • AR & VR
  • Digital twin & simulation
  • AI & Big data analytics
  • Robotics process automation
  • Cloud computing
  • Blockchain
  • Others

By Capacity

  • Large
  • Medium
  • Small

By Digitization Level

  • Full
  • Partial
  • Semi

By End User

  • Implementation
  • Upgrades and services

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • Japan
  • China
  • India
  • South Korea
  • Indonesia
  • Thailand
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline

2. RESEARCH METHODOLOGY

  • 2.1. Research Data
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Research Highlights

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Force Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis

5. GLOBAL DIGITAL SHIPYARD MARKET BY SHIPYARD TYPE

  • 5.1. Introduction
  • 5.2. Commercial
  • 5.3. Military

6. GLOBAL DIGITAL SHIPYARD MARKET BY TECHNOLOGY

  • 6.1. Introduction
  • 6.2. AR & VR
  • 6.3. Digital twin & simulation
  • 6.4. AI & Big data analytics
  • 6.5. Robotics process automation
  • 6.6. Cloud computing
  • 6.7. Blockchain
  • 6.8. Others

7. GLOBAL DIGITAL SHIPYARD MARKET BY CAPACITY

  • 7.1. Introduction
  • 7.2. Large
  • 7.3. Medium
  • 7.4. Small

8. GLOBAL DIGITAL SHIPYARD MARKET BY DIGITIZATION LEVEL

  • 8.1. Introduction
  • 8.2. Full
  • 8.3. Partial
  • 8.4. Semi

9. GLOBAL DIGITAL SHIPYARD MARKET BY END-USER

  • 9.1. Introduction
  • 9.2. Implementation
  • 9.3. Upgrades and services

10. GLOBAL DIGITAL SHIPYARD MARKET BY GEOGRAPHY

  • 10.1. Introduction
  • 10.2. North America
    • 10.2.1. United States
    • 10.2.2. Canada
    • 10.2.3. Mexico
  • 10.3. South America
    • 10.3.1. Brazil
    • 10.3.2. Argentina
    • 10.3.3. Others
  • 10.4. Europe
    • 10.4.1. United Kingdom
    • 10.4.2. Germany
    • 10.4.3. France
    • 10.4.4. Spain
    • 10.4.5. Others
  • 10.5. The Middle East and Africa
    • 10.5.1. Saudi Arabia
    • 10.5.2. UAE
    • 10.5.3. Israel
    • 10.5.4. Others
  • 10.6. Asia Pacific
    • 10.6.1. Japan
    • 10.6.2. China
    • 10.6.3. India
    • 10.6.4. South Korea
    • 10.6.5. Indonesia
    • 10.6.6. Thailand
    • 10.6.7. Others

11. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 11.1. Major Players and Strategy Analysis
  • 11.2. Market Share Analysis
  • 11.3. Mergers, Acquisitions, Agreements, and Collaborations

12. COMPANY PROFILES

  • 12.1. IBM
  • 12.2. Accenture
  • 12.3. Dassault systems
  • 12.4. Siemens AG
  • 12.5. PROSTEP INC
  • 12.6. Daman shipyard group
  • 12.7. AVEVA Group Plc

Not an exhaustive list