封面
市場調查報告書
商品編碼
1863325

化學和材料資訊學領域人工智慧市場:按技術、應用、組件、部署類型和最終用戶分類 - 全球預測(2025-2032 年)

AI in Chemical & Material Informatics Market by Technology, Application, Component, Deployment, End User - Global Forecast 2025-2032

出版日期: | 出版商: 360iResearch | 英文 197 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

預計到 2032 年,化學和材料資訊學領域的人工智慧市場將成長至 1,851.8 億美元,複合年成長率為 40.66%。

關鍵市場統計數據
基準年 2024 120.8億美元
預計年份:2025年 171億美元
預測年份 2032 1851.8億美元
複合年成長率 (%) 40.66%

權威洞察人工智慧如何改變化學和材料領域的發現工作流程、組織結構和策略投資。

人工智慧與化學和材料資訊學的融合正在改變科學發現、規模化和商業化的方式。無論是在研究機構、工業實驗室,還是製藥和材料公司,各組織都在加速將演算法方法整合到實驗設計、表徵和製程控制中,以縮短研發週期並提高可重複性。這些進步不僅代表技術升級,更代表著從資料架構和人才模式到監管合作和供應商生態系統等各個方面的系統性變革。

運算能力、演算法架構和資料可存取性的進步降低了准入門檻,同時也提高了對嚴格資料管治和跨學科協作的期望。因此,領導者必須平衡短期業務需求與對基礎設施和人力資本的長期策略投資。本報告引言概述了報告探討的核心主題:開啟全新發現途徑的技術基礎、創造價值所需的組織變革,以及影響關鍵硬體和材料取得的地緣政治和供應鏈動態。透過將這些趨勢置於實驗室實踐和企業策略的背景下進行分析,本報告旨在為規劃下一階段投資的高階主管和技術領導者提供切實可行的指南。

演算法進步、去中心化計算與管治架構如何共同重塑材料科學領域的發現、表徵與商業化路徑

化學和材料資訊學領域正經歷著變革性的轉變,其驅動力來自日益複雜的演算法、實驗自動化以及對永續性成果的日益重視。生成模型的興起、用於影像表徵的改進型捲積架構以及日趨成熟的預測和指示性分析技術,共同推動了高精度In Silico實驗的開展,並減少了對高成本的物理測試的依賴。同時,用於即時感測器回饋的邊緣運算和用於大規模模型訓練的雲端原生平台,正在改變資料密集型工作負載的運行地點和方式。

互通性標準和開放資料舉措正成為關鍵促進因素,助力跨機構模型檢驗和快速基準測試。組織規格與技術進步同步演進。由領域科學家、資料工程師和監管專家組成的多學科團隊正成為有效應用的關鍵。隨著企業權衡計算投資成本與更快獲得結果和提升產品性能的潛力,財務和營運風險狀況也在改變。值得注意的是,這些變化並非千篇一律。應用模式因應用領域和組織能力而異,因此,對於那些希望在控制營運風險的同時獲得先發優勢的領導者而言,在具有高影響力的應用領域開展試點部署等有針對性的策略至關重要。

最後,倫理和法規環境也在適應技術變革。模型來源的透明度、資料管道的可複現性以及材料來源的可追溯性正日益成為合規和聲譽風險管理的必要條件。因此,最重要的變革將是那些將技術進步與強力的管治相結合的變革,使組織能夠在保持科學嚴謹性和監管完整性的同時,提高生產力。

評估貿易措施和關稅趨勢將如何重塑材料和化學資訊學領域的籌資策略、供應鏈韌性以及合作研發。

貿易和關稅政策環境對化學和材料資訊學生態系統中技術採納的速度和方式有著切實的影響。進口關稅的提高或重新分類會影響高效能處理器、工業感測器和專用儲存系統,從而增加先進實驗室建設的資本密集度,並減緩運算密集型工作流程的部署。這些摩擦不僅限於資本財,還延伸到支持實驗活動的專用試劑和前驅材料的供應鏈,造成營運波動,需要採取積極的緩解措施。

為因應不斷升級的關稅,各組織開始調整籌資策略。他們強調建立多元化的供應商網路和簽訂長期契約,以應對成本波動並確保關鍵投入的持續供應。研究聯盟和分散式研發網路正在成為實體集中式實驗室的替代方案,使企業能夠利用受關稅影響較小的替代設施。此外,企業正在加速投資軟體可移植性(容器化工作流程)和混合雲端/邊緣環境,並根據需要跨司法管轄區遷移分析工作負載,以最佳化成本並確保合規性。

政策變化也會影響我們與國際夥伴的合作方式。改變跨境設備運輸經濟格局的法規以及重塑智慧財產權轉讓預期的措施,都可能使合作計劃複雜化,並減緩知識交流。為了保持合作勢頭,研究機構正優先採用模組化、可互通的實驗平台,強調數據標準化,從而實現遠端參與,無需實際移動資產。最終,關稅及相關貿易措施的累積影響凸顯了策略性供應鏈設計、監管情報以及靈活部署模式的重要性,這些要素既能維持研究進度,又能有效控制成本和合規風險。

對資訊科學領域的演算法方法、應用優先順序、元件架構、部署拓撲和最終用戶需求進行綜合洞察

對領域分類的清晰理解對於化學和材料資訊學的能力設計和投資優先順序至關重要。從技術角度來看,該領域建立在多種演算法基礎之上:電腦視覺不斷推進高解析度影像分析,用於顯微鏡和表面表徵。數據分析涵蓋說明分析(用於摘要實驗歷史)、預測性分析(用於預測材料行為)和指示性分析(用於推薦實驗參數)。深度學習包括針對空間資料最佳化的卷積類神經網路、用於分子和形態生成的生成對抗網路以及用於時間序列資料的循環神經網路。機器學習技術包括用於自主實驗控制的強化學習、用於性質預測的監督學習以及用於在高維度資料集中發現模式的無監督學習。

應用細分揭示了這些技術能夠立即創造價值的領域:藥物發現流程受益於In Silico先導化合物識別和高通量分子篩檢;材料設計利用演算法生成和逆向設計技術來提案候選的化學和晶體結構;工藝最佳化著眼於能源效率和反應條件最佳化,從而實現生產和實驗室操作的持續改進;品管日益依賴於自動化檢測和檢測供應供應;

組件層面的考量旨在確定哪些領域的投資能夠產生營運影響。硬體投資主要集中在用於模型訓練的處理器、用於增強實驗遙測的感測器以及用於儲存高精度資料集的儲存系統。服務包括諮詢服務(將業務目標轉化為技術規格)、實施協助(幫助流程實現營運化)以及培訓專案(幫助企業建立內部能力)。在軟體層面,我們優先考慮資料管理(溯源追蹤和存取)、建模工具(模擬和預測)以及視覺化工具(將複雜的輸出轉化為可執行的洞察)。部署類型涵蓋廣泛,從用於可擴展運算的雲端優先策略、用於低延遲實驗控制的邊緣部署、用於受監管工作負載的混合配置,到用於敏感知識產權和託管環境的本地部署系統。最終用戶群多樣,包括致力於推進調查方法的學術研究團隊、專注於製程和產品創新的化工企業、致力於新型功能材料研發的材料科學機構以及加速治療方法發現的製藥團隊。這種複雜的細分凸顯了整合策略的必要性,該策略需要將技術能力與應用優先順序、元件架構、部署限制和使用者能力相匹配。

區域創新生態系統、監管標準和供應鏈結構如何塑​​造全球各區域的差異化策略和實施模式

區域動態影響化學和材料資訊學領域的優先事項、夥伴關係和部署模式,因此需要採取差異化的策略和投資方法。在美洲,強大的創新生態系統和集中的雲端處理能力為快速原型製作和產學研合作提供了支持。該地區受益於深厚的創業投資和私募資本管道,以及在實驗室向生產設施轉化方面豐富的經驗,各組織通常會在更廣泛部署之前在此試點先進的工作流程。儘管管理體制因司法管轄區而異,但對智慧財產權保護和加速商業化的重視有利於商業化和Start-Ups的成立。

歐洲、中東和非洲地區在建立標準和永續性框架方面擁有多元化的能力,其中成熟的產業機構、國家實驗室和聯盟發揮主導作用。跨境研究資助和跨區域舉措正在推動強調循環性、材料生命週期透明度和更嚴格的環境合規性的合作計劃。基礎設施成熟度的差異正在推動混合部署模式的發展,這種模式將雲端服務與安全的本地設施相結合,用於處理受監管的工作負載。在多個司法管轄區,政策獎勵和公私合營正在推動對符合永續性目標的資料管治和可追溯性解決方案的需求。

亞太地區正經歷快速的數位轉型,這主要得益於其龐大的製造業生態系統、不斷擴大的國內半導體產能以及雄心勃勃的國家研發計畫。與材料供應商和製造合作夥伴的地理位置接近性,使得資訊技術能夠積極地整合到生產線中;而對邊緣運算和感測器的投資,往往源於對即時製程控制的需求。進出口貿易政策和區域供應鏈策略影響硬體和專用設備的採購,促使許多企業制定穩健的、地理分散的籌資策略。在所有地區,本地人才的可用性、監管限制和基礎設施的成熟度決定了架構的選擇——雲端原生、邊緣運算、混合架構或本地部署——因此,區域規劃對於成功轉型至關重要。

競爭格局和夥伴關係策略正在塑造整個生態系統的硬體專業化、軟體模組化、服務擴展和整合解決方案交付。

在化學和材料資訊學領域運作的公司在提供硬體、軟體平台、服務和整合解決方案方面扮演著不同的角色,它們的策略選擇決定了競爭動態。硬體供應商正在投資於針對特定領域最佳化的運算和感測器套件,以降低獲取高品質實驗遙測數據的門檻。軟體公司則專注於模組化建模工具、與實驗室資訊管理系統更緊密的整合以及改進的視覺化功能,以幫助化學家和材料科學家利用複雜的輸出結果。服務供應商認知到,僅靠技術本身不足以解決問題,還需要相應的組織變革,因此他們不再僅僅提供實施支持,而是提供以諮詢主導的工作流程和培訓,以加速內部能力建設。

策略夥伴關係和協作網路是快速建構能力的常用途徑。企業擴大與儀器製造商、雲端服務提供者和學術實驗室簽訂共同開發契約,以建立檢驗的技術棧,從而降低整合風險。併購正被選擇性地用於獲取專業人才和獨特的智慧財產權,尤其是在生成式建模和自主實驗等領域。開放原始碼系統和社群基準測試的影響力持續增強,鼓勵企業貢獻並利用共用資料集,同時透過獨特的資料管理和模型微調實現差異化。對於買方和合作夥伴而言,選擇供應商時應優先考慮其成熟的領域經驗、與現有實驗室系統的互通性以及清晰的合藍圖,以確保符合監管和資料管治要求。

為建構治理、管治架構、夥伴關係關係和人力資本,將人工智慧的潛力轉化為可重複的營運成果,提供切實可行的、循序漸進的策略行動方案。

產業領導者若想從其在化學和材料資訊學領域的AI投資中獲得持久價值,應採取連貫的分階段策略,使技術投入與組織能力和風險接受度相符。他們首先應建立基礎的資料管治和溯源實踐,確保資料集在不同計劃中的可發現性、審核和可重用性。這可以減少重複工作,並加快模型檢驗。同時,他們應優先在流程最佳化和品管等高影響力領域試驗計畫,以展示並推廣可衡量的營運效益。

對於受監管的工作負載或需要智慧財產權保護的工作負載,投資於混合部署模式大有裨益。這種模型結合了雲端運算的可擴展性以及邊緣或本地系統的低延遲和可控性。這種架構靈活性使團隊能夠將工作負載部署在最具成本效益和合規性的位置。與硬體和平台供應商建立策略夥伴關係,以確保獲得針對特定領域最佳化的工具,並降低整合風險。同樣重要的是人員因素:組建跨職能團隊,匯集領域科學家、資料工程師和合規專家,並投資於持續的技能提升計劃,以保持內部發展動力。

最後,圍繞著模型來源、可複製性和合乎道德的使用,建立清晰的管治框架,並將採購和供應商策略與韌性目標保持一致,以防範供應鏈中斷。透過結合有針對性的試點專案、靈活的配置架構、策略夥伴關係關係、人才培養和健全的管治,領導者可以將實驗潛力轉化為可重複的營運成果。

採用嚴謹的混合方法,結合一手訪談、技術文獻回顧、專利分析和情境評估,以檢驗實際研究結果。

本研究綜合運用多層次調查方法,將一手質性資料與二手技術文獻、專利概況和政策概況的系統性回顧結合。一手資料包括對專家科學家、實驗室主任和技術採購人員的結構化訪談,以及旨在識別新興主題和應用案例優先事項的檢驗研討會。二手研究涵蓋同行評審文章、預印本、標準文件和公開技術報告,以驗證觀察結果並識別跨機構的可複製模式。

我們的分析方法結合了訪談記錄的主題編碼、平台功能的比較分析以及與材料和化學資訊學相關的演算法架構的技術評估。我們利用專利分析和技術藍圖來突顯活躍的創新領域,並評估工具發展的可預測方向。在適當情況下,我們應用情境規劃和敏感度分析來評估政策變化、供應鏈中斷和技術能力提升對技術採納路徑的影響。我們承認調查方法的局限性:鑑於技術發展的快速步伐,一些供應商的功能和新興模型可能會迅速演變,因此我們優先考慮穩健且可重複的研究結果,而非曇花一現的市場宣傳。為了減少偏差,我們的研究結果經過獨立專家的最後覆核,並由多個資料來源檢驗。

關於技術進步、管治和策略發展如何促進資訊科學領域可重複創新和穩健價值創造的共識

總之,人工智慧與化學和材料資訊學的融合正在顯著改變發現、最佳化和製造決策的方式。電腦視覺、深度學習和分析技術的進步催生了新的實驗範式,但混合部署策略和改進的管治實踐對於大規模實現這些優勢至關重要。地緣政治和貿易動態帶來了許多限制因素,因此需要彈性採購和靈活部署;此外,基礎設施和法規的區域差異也要求採取量身定做的實施方案。

那些將嚴謹的數據實踐、高影響力應用的定向試點以及戰略夥伴關係關係相結合的組織,將更有能力把技術能力轉化為商業性和科學成果。改變的速度既帶來機會也帶來風險。投資於人力資本、管治和模組化架構的組織,可以在維持品質和合規性的同時,加速創新週期。最終,最成功的舉措將是那些將卓越的技術、組織準備和策略遠見相結合,從而在發現和生產工作流程中實現永續、可重複成果的舉措。

目錄

第1章:序言

第2章調查方法

第3章執行摘要

第4章 市場概覽

第5章 市場洞察

  • 將深度生成模型整合到材料設計中,以更快預測聚合物性能
  • 在藥物發現中實現用於自動化高通量篩檢的主動學習流程
  • 採用可解釋的變壓器架構進行複雜合成化學中的反應路徑預測
  • 引入結合量子計算和機器學習的多保真建模方法進行合金成分最佳化
  • 利用強化學習驅動的過程控制提高化學生產效率和永續性
  • 開發用於映射分子相互作用的圖神經網路,以預測電池電解在工作條件下的性能

第6章:美國關稅的累積影響,2025年

第7章:人工智慧的累積影響,2025年

8. 化學和材料資訊學領域的人工智慧市場(按技術分類)

  • 電腦視覺
  • 數據分析
    • 說明分析
    • 預測分析
    • 預測分析
  • 深度學習
    • 卷積類神經網路
    • 生成對抗網路
    • 循環神經網路
  • 機器學習
    • 強化學習
    • 監督式學習
    • 無監督學習

第9章 化學和材料資訊學領域的人工智慧市場(按應用分類)

  • 藥物發現
    • 先導化合物鑑定
    • 分子篩檢
  • 材料設計
  • 流程最佳化
    • 能源效率
    • 反應最佳化
  • 品管
  • 供應鏈管理

第10章 化學和材料資訊學領域的人工智慧市場(按組件分類)

  • 硬體
    • 處理器
    • 感應器
    • 儲存系統
  • 服務
    • 諮詢
    • 介紹
    • 訓練
  • 軟體
    • 資料管理
    • 建模工具
    • 視覺化工具

第11章 化學和材料資訊學領域的人工智慧市場(按部署方式分類)

  • 邊緣
  • 混合
  • 本地部署

第12章:化學和材料資訊學領域最終用戶的AI市場

  • 學術研究
  • 化學品
  • 材料科學
  • 製藥

13. 各地區化學和材料資訊學領域的人工智慧市場

  • 美洲
    • 北美洲
    • 拉丁美洲
  • 歐洲、中東和非洲
    • 歐洲
    • 中東
    • 非洲
  • 亞太地區

第14章 化學和材料資訊學領域的人工智慧市場(按組別分類)

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

第15章 各國化學和材料資訊學領域的人工智慧市場

  • 美國
  • 加拿大
  • 墨西哥
  • 巴西
  • 英國
  • 德國
  • 法國
  • 俄羅斯
  • 義大利
  • 西班牙
  • 中國
  • 印度
  • 日本
  • 澳洲
  • 韓國

第16章 競爭格局

  • 2024年市佔率分析
  • FPNV定位矩陣,2024
  • 競爭分析
    • Accenture plc
    • International Business Machines Corporation
    • Thermo Fisher Scientific Inc.
    • Dassault Systemes SE
    • BASF SE
    • NVIDIA Corporation
    • SAP SE
    • Schrodinger, Inc.
    • RELX plc
    • Dow Inc
Product Code: MRR-2E76C3E47E28

The AI in Chemical & Material Informatics Market is projected to grow by USD 185.18 billion at a CAGR of 40.66% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 12.08 billion
Estimated Year [2025] USD 17.10 billion
Forecast Year [2032] USD 185.18 billion
CAGR (%) 40.66%

An authoritative orientation to how AI is transforming discovery workflows, organizational structures, and strategic investments across chemical and materials sectors

The convergence of artificial intelligence and chemical and materials informatics is reshaping how science is discovered, scaled, and commercialized. Organizations across research institutions, industrial laboratories, and pharmaceutical and materials companies are increasingly integrating algorithmic methods into experimental design, characterization, and process control to compress development cycles and improve reproducibility. These developments are not isolated technological upgrades; rather, they represent a systemic shift in capability that touches data architectures, talent models, regulatory interactions, and supplier ecosystems.

Advances in compute, algorithmic architectures, and data accessibility have lowered barriers to entry while simultaneously raising expectations for rigorous data governance and cross-disciplinary collaboration. As a result, leaders must reconcile short-term operational demands with long-term strategic investments in infrastructure and human capital. This introduction frames the core themes explored throughout the report: the technical enablers that are unlocking new discovery pathways, the organizational transformations required to capture value, and the geopolitical and supply chain dynamics that influence access to critical hardware and materials. By situating these trends within both laboratory practice and enterprise strategy, the intention is to provide an actionable orientation for executives and technical leaders planning next-phase investments.

How algorithmic advancements, compute decentralization, and governance frameworks are jointly redefining discovery, characterization, and commercialization pathways in materials science

The landscape of chemical and materials informatics is experiencing transformative shifts driven by algorithmic sophistication, experimental automation, and a growing emphasis on sustainability outcomes. The rise of generative models, improvements in convolutional architectures for image-centric characterization, and the maturation of predictive and prescriptive analytics are collectively enabling higher-fidelity in silico experiments that reduce reliance on costly physical trials. At the same time, edge computing for real-time sensor feedback and cloud-native platforms for large-scale model training are changing where and how data-intensive workloads are executed.

Interoperability standards and open data initiatives have emerged as critical accelerants, permitting cross-institutional model validation and rapid benchmarking. Alongside technological progress, organizational norms are evolving: multidisciplinary teams that combine domain scientists, data engineers, and regulatory specialists are becoming central to effective deployment. Financial and operational risk profiles are also shifting as firms weigh the cost of computational investments against the potential of faster time-to-result and improved product performance. Importantly, these shifts are not uniform; adoption patterns vary by application domain and by institutional capacity, which makes targeted strategies-such as piloting in high-impact application areas-essential for leaders seeking to capture first-mover advantages while managing operational exposure.

Finally, the ethical and regulatory environment is adapting to these technical changes. Transparency in model provenance, reproducibility of data pipelines, and traceability of materials sources are increasingly requisites for both compliance and reputational risk management. Therefore, the most consequential transformations are those that integrate technical advances with robust governance, allowing organizations to derive productivity gains while maintaining scientific rigor and regulatory integrity.

Assessing how trade measures and tariff dynamics reshape procurement strategies, supply chain resilience, and collaborative R&D within materials and chemical informatics

The policy environment for trade and tariffs has a tangible impact on the pace and shape of technology adoption within the chemical and materials informatics ecosystem. Elevated import levies and classification changes affecting high-performance processors, industrial sensors, and specialized storage systems increase the capital intensity of advanced laboratory buildouts and can delay rollouts of compute-dependent workflows. These frictions extend beyond capital goods to the supply chains for specialty reagents and precursor materials that underpin experimental campaigns, creating operational volatility that requires proactive mitigation.

In response to heightened tariff regimes, organizations have begun to adjust procurement strategies, favoring diversified supplier networks and longer-term contracts to absorb cost fluctuations and ensure continuity of critical inputs. Research alliances and distributed R&D networks have emerged as partial substitutes for physically centralized labs, enabling teams to leverage alternate facilities where tariff impacts are less pronounced. Additionally, companies are accelerating investments in software portability-containerized workflows and hybrid cloud/edge deployments-so that analytical workloads can be shifted across jurisdictions as needed to optimize cost and regulatory alignment.

Policy shifts also influence collaboration patterns with international partners. Restrictions that change the economics of cross-border equipment shipments or alter intellectual property transfer expectations can complicate joint projects and slow knowledge exchange. To maintain momentum, research organizations are prioritizing modular, interoperable experimental platforms and emphasizing data standards that allow remote participation without the need for physical asset movement. Ultimately, the cumulative effect of tariffs and related trade measures is to increase the importance of strategic supply chain design, regulatory intelligence, and flexible deployment models that preserve research velocity while controlling cost and compliance exposure.

Integrated segmentation insights connecting algorithmic approaches, application priorities, component architectures, deployment topologies, and end-user requirements in informatics

A clear understanding of the domain segmentation is essential for designing capabilities and prioritizing investments across chemical and materials informatics. From a technology perspective, the field is built on multiple algorithmic pillars: Computer Vision continues to advance high-resolution image analysis for microscopy and surface characterization; Data Analytics spans descriptive analytics that summarize experimental history, predictive analytics that anticipate material behavior, and prescriptive analytics that recommend experimental parameters; Deep Learning encompasses convolutional neural networks optimized for spatial data, generative adversarial networks used for molecular and morphological generation, and recurrent neural networks for sequence- and time-series data; Machine Learning methods include reinforcement learning for autonomous experimental control, supervised learning for property prediction, and unsupervised learning for pattern discovery in high-dimensional datasets.

Application segmentation reveals where these technologies create immediate value. Drug discovery workflows benefit from in silico lead identification and high-throughput molecular screening, while materials design leverages algorithmic generation and inverse design techniques to propose candidate chemistries and structures. Process optimization addresses energy efficiency and reaction optimization, enabling continuous improvements in manufacturing and lab operations. Quality control increasingly relies on automated inspection and anomaly detection, and supply chain management integrates predictive analytics to secure raw material availability and trace provenance.

Component-level considerations determine where investment yields operational leverage. Hardware investments focus on processors for model training, sensors for richer experimental telemetry, and storage systems for high-fidelity datasets. Services encompass consulting to translate business objectives into technical specifications, implementation support to operationalize pipelines, and training programs to build in-house competencies. Software layers prioritize data management for provenance and accessibility, modeling tools for simulation and prediction, and visualization tools that render complex outputs into actionable insights. Deployment choices span cloud-first strategies for scalable compute, edge implementations for low-latency experimental control, hybrid topologies for regulatory-constrained workloads, and on-premise systems for sensitive IP or controlled environments. End users are diverse, including academic research groups pushing methodology, chemical companies focused on process and product innovation, material science organizations pursuing novel functional materials, and pharmaceutical teams accelerating therapeutic discovery. This composite segmentation underscores the need for integrated strategies that align technology capability with application priorities, component architectures, deployment constraints, and user competencies.

How regional innovation ecosystems, regulatory norms, and supply chain structures are shaping differentiated strategies and deployment models across global regions

Regional dynamics shape priorities, partnerships, and deployment models in chemical and materials informatics, requiring differentiated approaches to strategy and investment. In the Americas, strong innovation ecosystems and a concentration of cloud and compute capacity support rapid prototyping and industry-academic collaborations. This region benefits from deep channels to venture and private capital as well as extensive expertise in scaling laboratory-to-factory transitions, so organizations often pilot advanced workflows here before broader rollouts. Regulatory regimes vary by jurisdiction, but the emphasis on intellectual property protection and commercial acceleration creates an environment conducive to commercialization and startup formation.

Europe, the Middle East, and Africa present a mosaic of capabilities where industrial incumbents, national laboratories, and consortia play leading roles in establishing standards and sustainability frameworks. Cross-border research funding and pan-regional initiatives foster collaborative projects that emphasize circularity, materials lifecycle transparency, and stricter environmental compliance. Differences in infrastructure maturity encourage hybrid deployment models, with cloud services complemented by secure on-premise installations for regulated workloads. In several jurisdictions, policy incentives and public-private collaborations have elevated demand for data governance and traceability solutions that align with sustainability targets.

Asia-Pacific exhibits rapid adoption driven by sizeable manufacturing ecosystems, growing in-country semiconductor capacity, and ambitious national research agendas. The proximity to materials suppliers and manufacturing partners enables aggressive integration of informatics into production lines, and investments in edge computing and sensors are frequently motivated by the need for real-time process control. Export and trade policies, along with regional supply chain strategies, influence where hardware and specialized equipment are sourced, prompting many organizations to build resilient, regionally diversified procurement strategies. Across all regions, local talent availability, regulatory constraints, and infrastructure maturity dictate whether deployments favor cloud-native, edge, hybrid, or on-premise architectures, making regionally informed planning essential for successful implementation.

Competitive dynamics and partnership strategies shaping hardware specialization, software modularity, services expansion, and integrated solution delivery across the ecosystem

Companies operating in the chemical and materials informatics space occupy distinct roles across hardware provision, software platforms, services, and integrated solution delivery, and their strategic choices are defining competitive dynamics. Hardware providers are investing in domain-optimized compute and sensor suites that lower the barrier to capturing high-quality experimental telemetry. Software firms are focusing on modular modeling tools, tighter integration with laboratory information management systems, and improved visualization to make complex outputs usable by chemists and materials scientists. Service providers are expanding beyond implementation to offer consulting-led workflows and training to accelerate internal capability building, recognizing that technology alone is insufficient without parallel organizational change.

Strategic partnerships and collaboration networks are a common route to rapid capability assembly. Firms are increasingly entering co-development agreements with instrument manufacturers, cloud providers, and academic labs to create validated stacks that reduce integration risk. Mergers and acquisitions are being used selectively to acquire specialist talent and unique IP, particularly in areas such as generative modeling and autonomous experimentation. Open-source ecosystems and community benchmarks continue to exert influence, encouraging companies to contribute and leverage shared datasets while differentiating through proprietary data curation and model fine-tuning. For buyers and partners, vendor selection should prioritize demonstrated domain experience, interoperability with existing laboratory systems, and a clear roadmap for regulatory and data governance compliance.

Practical and phased strategic actions to build governance, hybrid architectures, partnerships, and human capital that convert AI promise into repeatable operational outcomes

Industry leaders looking to derive sustained value from AI investments in chemical and materials informatics should pursue a coherent, phased strategy that aligns technical initiatives with organizational capabilities and risk tolerance. Begin by establishing foundational data governance and provenance practices that make datasets discoverable, auditable, and reusable across projects; this reduces duplication of effort and accelerates model validation. Concurrently, prioritize pilot programs in high-impact application areas such as process optimization and quality control, where measurable operational benefits can be demonstrated and scaled.

Invest in a hybrid deployment model that balances the scalability of cloud compute with the latency and control benefits of edge or on-premise systems for regulated or IP-sensitive workloads. This architectural flexibility will allow teams to place workloads where they are most cost-effective and compliant. Forge strategic partnerships with hardware and platform providers to ensure access to domain-optimized instrumentation and to de-risk integration efforts. Equally important is the human dimension: develop cross-functional teams that combine domain scientists, data engineers, and compliance specialists, and invest in continuous upskilling programs to maintain internal momentum.

Finally, implement a clear governance framework for model provenance, reproducibility, and ethical use, and align procurement and supplier strategies with resilience objectives to protect against supply chain disruptions. By combining targeted pilots, flexible deployment architectures, strategic partnerships, workforce development, and robust governance, leaders can translate experimental promise into repeatable operational outcomes.

A rigorous mixed-method approach combining primary interviews, technical literature synthesis, patent analysis, and scenario evaluation to validate actionable insights

This research synthesizes insight from a multilayered methodology that combines primary qualitative inputs with a systematic review of secondary technical literature, patent landscapes, and policy developments. Primary inputs included structured interviews with domain scientists, laboratory directors, and technology procurement leads, alongside workshops that validated emergent themes and use-case priorities. Secondary investigations encompassed peer-reviewed publications, preprints, standards documents, and publicly available technical reports to triangulate observational findings and to identify reproducible patterns across institutions.

Analytical methods integrated thematic coding of interview transcripts, comparative analysis of platform capabilities, and technical evaluation of algorithmic architectures relevant to materials and chemical informatics. Patent analysis and technology roadmaps were used to highlight areas of active innovation and to assess likely directions for tool evolution. Where appropriate, scenario planning and sensitivity analysis were applied to evaluate how policy shifts, supply chain disruptions, and technology performance improvements could influence adoption pathways. Limitations of the methodology are acknowledged: the rapid pace of development means that some vendor capabilities and emergent models may evolve quickly, and the research emphasizes robust, reproducible findings over transient marketing claims. To mitigate bias, findings were cross-checked with independent experts and validated against multiple data sources.

Convergent conclusions on how technical advances, governance, and strategic deployment enable reproducible innovation and resilient value creation in informatics

In conclusion, the integration of artificial intelligence into chemical and materials informatics is delivering substantive changes in how discovery, optimization, and manufacturing decisions are made. Technical advances across computer vision, deep learning, and analytics are enabling new experimental paradigms, while hybrid deployment strategies and improved governance practices are essential to realize their benefits at scale. Geopolitical and trade dynamics impose constraints that require resilient procurement and flexible deployment, and regional differences in infrastructure and regulation demand tailored approaches to implementation.

Organizations that combine disciplined data practices, targeted pilots in high-impact applications, and strategic partnerships will be best positioned to convert technological capability into commercial and scientific outcomes. The pace of change creates both opportunity and risk: those who invest in human capital, governance, and modular architectures can accelerate innovation cycles while preserving quality and compliance. Ultimately, the most successful initiatives will be those that integrate technical excellence with organizational readiness and strategic foresight, enabling sustainable, reproducible gains in discovery and production workflows.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of deep generative models for accelerated polymer property prediction in materials design
  • 5.2. Implementation of active learning pipelines for automated high-throughput screening in pharmaceutical discovery
  • 5.3. Adoption of explainable transformer architectures for predicting reaction pathways in complex synthetic chemistry
  • 5.4. Deployment of multi-fidelity modeling combining quantum calculations and machine learning for alloy composition optimization
  • 5.5. Utilization of reinforcement learning-driven process control to enhance chemical manufacturing efficiency and sustainability
  • 5.6. Development of graph neural networks for mapping molecular interactions to predict battery electrolyte performance under operational conditions

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. AI in Chemical & Material Informatics Market, by Technology

  • 8.1. Computer Vision
  • 8.2. Data Analytics
    • 8.2.1. Descriptive Analytics
    • 8.2.2. Predictive Analytics
    • 8.2.3. Prescriptive Analytics
  • 8.3. Deep Learning
    • 8.3.1. Convolutional Neural Network
    • 8.3.2. Generative Adversarial Network
    • 8.3.3. Recurrent Neural Network
  • 8.4. Machine Learning
    • 8.4.1. Reinforcement Learning
    • 8.4.2. Supervised Learning
    • 8.4.3. Unsupervised Learning

9. AI in Chemical & Material Informatics Market, by Application

  • 9.1. Drug Discovery
    • 9.1.1. Lead Identification
    • 9.1.2. Molecular Screening
  • 9.2. Materials Design
  • 9.3. Process Optimization
    • 9.3.1. Energy Efficiency
    • 9.3.2. Reaction Optimization
  • 9.4. Quality Control
  • 9.5. Supply Chain Management

10. AI in Chemical & Material Informatics Market, by Component

  • 10.1. Hardware
    • 10.1.1. Processors
    • 10.1.2. Sensors
    • 10.1.3. Storage Systems
  • 10.2. Services
    • 10.2.1. Consulting
    • 10.2.2. Implementation
    • 10.2.3. Training
  • 10.3. Software
    • 10.3.1. Data Management
    • 10.3.2. Modeling Tools
    • 10.3.3. Visualization Tools

11. AI in Chemical & Material Informatics Market, by Deployment

  • 11.1. Cloud
  • 11.2. Edge
  • 11.3. Hybrid
  • 11.4. On Premise

12. AI in Chemical & Material Informatics Market, by End User

  • 12.1. Academic Research
  • 12.2. Chemicals
  • 12.3. Material Science
  • 12.4. Pharmaceuticals

13. AI in Chemical & Material Informatics Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. AI in Chemical & Material Informatics Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. AI in Chemical & Material Informatics Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Accenture plc
    • 16.3.2. International Business Machines Corporation
    • 16.3.3. Thermo Fisher Scientific Inc.
    • 16.3.4. Dassault Systemes SE
    • 16.3.5. BASF SE
    • 16.3.6. NVIDIA Corporation
    • 16.3.7. SAP SE
    • 16.3.8. Schrodinger, Inc.
    • 16.3.9. RELX plc
    • 16.3.10. Dow Inc

LIST OF FIGURES

  • FIGURE 1. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TECHNOLOGY, 2024 VS 2032 (%)
  • FIGURE 3. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TECHNOLOGY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 4. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY APPLICATION, 2024 VS 2032 (%)
  • FIGURE 5. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY APPLICATION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPONENT, 2024 VS 2032 (%)
  • FIGURE 7. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPONENT, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEPLOYMENT, 2024 VS 2032 (%)
  • FIGURE 9. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEPLOYMENT, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY END USER, 2024 VS 2032 (%)
  • FIGURE 11. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY END USER, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 12. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 13. AMERICAS AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 14. NORTH AMERICA AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 15. LATIN AMERICA AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 16. EUROPE, MIDDLE EAST & AFRICA AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 17. EUROPE AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 18. MIDDLE EAST AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 19. AFRICA AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 20. ASIA-PACIFIC AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 21. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GROUP, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 22. ASEAN AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 23. GCC AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 24. EUROPEAN UNION AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 25. BRICS AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 26. G7 AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 27. NATO AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 28. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 29. AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 30. AI IN CHEMICAL & MATERIAL INFORMATICS MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, 2025-2032 (USD MILLION)
  • TABLE 5. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TECHNOLOGY, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TECHNOLOGY, 2025-2032 (USD MILLION)
  • TABLE 7. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPUTER VISION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPUTER VISION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 9. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPUTER VISION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPUTER VISION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 11. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPUTER VISION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPUTER VISION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 13. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, 2025-2032 (USD MILLION)
  • TABLE 15. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 17. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 19. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA ANALYTICS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 21. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DESCRIPTIVE ANALYTICS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DESCRIPTIVE ANALYTICS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 23. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DESCRIPTIVE ANALYTICS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DESCRIPTIVE ANALYTICS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 25. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DESCRIPTIVE ANALYTICS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DESCRIPTIVE ANALYTICS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 27. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PREDICTIVE ANALYTICS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PREDICTIVE ANALYTICS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 29. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PREDICTIVE ANALYTICS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PREDICTIVE ANALYTICS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 31. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PREDICTIVE ANALYTICS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PREDICTIVE ANALYTICS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 33. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PRESCRIPTIVE ANALYTICS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PRESCRIPTIVE ANALYTICS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 35. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PRESCRIPTIVE ANALYTICS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PRESCRIPTIVE ANALYTICS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 37. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PRESCRIPTIVE ANALYTICS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PRESCRIPTIVE ANALYTICS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 39. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, 2025-2032 (USD MILLION)
  • TABLE 41. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 43. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 45. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEEP LEARNING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 47. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONVOLUTIONAL NEURAL NETWORK, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONVOLUTIONAL NEURAL NETWORK, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 49. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONVOLUTIONAL NEURAL NETWORK, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONVOLUTIONAL NEURAL NETWORK, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 51. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONVOLUTIONAL NEURAL NETWORK, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONVOLUTIONAL NEURAL NETWORK, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 53. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GENERATIVE ADVERSARIAL NETWORK, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GENERATIVE ADVERSARIAL NETWORK, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 55. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GENERATIVE ADVERSARIAL NETWORK, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GENERATIVE ADVERSARIAL NETWORK, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 57. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GENERATIVE ADVERSARIAL NETWORK, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY GENERATIVE ADVERSARIAL NETWORK, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 59. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY RECURRENT NEURAL NETWORK, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY RECURRENT NEURAL NETWORK, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 61. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY RECURRENT NEURAL NETWORK, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY RECURRENT NEURAL NETWORK, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 63. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY RECURRENT NEURAL NETWORK, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY RECURRENT NEURAL NETWORK, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 65. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, 2025-2032 (USD MILLION)
  • TABLE 67. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 69. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 71. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MACHINE LEARNING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 73. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REINFORCEMENT LEARNING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REINFORCEMENT LEARNING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 75. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REINFORCEMENT LEARNING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REINFORCEMENT LEARNING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 77. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REINFORCEMENT LEARNING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REINFORCEMENT LEARNING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 79. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPERVISED LEARNING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPERVISED LEARNING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 81. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPERVISED LEARNING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPERVISED LEARNING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 83. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPERVISED LEARNING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPERVISED LEARNING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 85. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY UNSUPERVISED LEARNING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY UNSUPERVISED LEARNING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 87. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY UNSUPERVISED LEARNING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY UNSUPERVISED LEARNING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 89. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY UNSUPERVISED LEARNING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY UNSUPERVISED LEARNING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 91. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 93. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, 2025-2032 (USD MILLION)
  • TABLE 95. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 97. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 99. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DRUG DISCOVERY, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 101. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY LEAD IDENTIFICATION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY LEAD IDENTIFICATION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 103. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY LEAD IDENTIFICATION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY LEAD IDENTIFICATION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 105. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY LEAD IDENTIFICATION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY LEAD IDENTIFICATION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 107. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MOLECULAR SCREENING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MOLECULAR SCREENING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 109. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MOLECULAR SCREENING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MOLECULAR SCREENING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 111. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MOLECULAR SCREENING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MOLECULAR SCREENING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 113. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MATERIALS DESIGN, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 114. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MATERIALS DESIGN, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 115. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MATERIALS DESIGN, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 116. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MATERIALS DESIGN, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 117. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MATERIALS DESIGN, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 118. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MATERIALS DESIGN, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 119. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, 2018-2024 (USD MILLION)
  • TABLE 120. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, 2025-2032 (USD MILLION)
  • TABLE 121. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 122. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 123. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 124. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 125. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 126. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESS OPTIMIZATION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 127. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ENERGY EFFICIENCY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 128. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ENERGY EFFICIENCY, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 129. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ENERGY EFFICIENCY, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 130. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ENERGY EFFICIENCY, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 131. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ENERGY EFFICIENCY, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 132. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ENERGY EFFICIENCY, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 133. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REACTION OPTIMIZATION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 134. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REACTION OPTIMIZATION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 135. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REACTION OPTIMIZATION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 136. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REACTION OPTIMIZATION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 137. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REACTION OPTIMIZATION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 138. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY REACTION OPTIMIZATION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 139. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY QUALITY CONTROL, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 140. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY QUALITY CONTROL, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 141. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY QUALITY CONTROL, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 142. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY QUALITY CONTROL, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 143. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY QUALITY CONTROL, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 144. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY QUALITY CONTROL, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 145. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPPLY CHAIN MANAGEMENT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 146. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPPLY CHAIN MANAGEMENT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 147. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPPLY CHAIN MANAGEMENT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 148. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPPLY CHAIN MANAGEMENT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 149. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPPLY CHAIN MANAGEMENT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 150. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SUPPLY CHAIN MANAGEMENT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 151. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 152. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 153. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, 2018-2024 (USD MILLION)
  • TABLE 154. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, 2025-2032 (USD MILLION)
  • TABLE 155. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 156. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 157. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 158. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 159. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 160. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HARDWARE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 161. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESSORS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 162. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESSORS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 163. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESSORS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 164. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESSORS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 165. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESSORS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 166. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY PROCESSORS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 167. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SENSORS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 168. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SENSORS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 169. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SENSORS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 170. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SENSORS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 171. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SENSORS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 172. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SENSORS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 173. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY STORAGE SYSTEMS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 174. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY STORAGE SYSTEMS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 175. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY STORAGE SYSTEMS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 176. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY STORAGE SYSTEMS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 177. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY STORAGE SYSTEMS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 178. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY STORAGE SYSTEMS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 179. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 180. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, 2025-2032 (USD MILLION)
  • TABLE 181. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 182. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 183. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 184. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 185. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 186. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SERVICES, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 187. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONSULTING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 188. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONSULTING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 189. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONSULTING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 190. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONSULTING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 191. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONSULTING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 192. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CONSULTING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 193. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY IMPLEMENTATION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 194. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY IMPLEMENTATION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 195. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY IMPLEMENTATION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 196. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY IMPLEMENTATION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 197. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY IMPLEMENTATION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 198. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY IMPLEMENTATION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 199. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TRAINING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 200. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TRAINING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 201. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TRAINING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 202. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TRAINING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 203. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TRAINING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 204. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY TRAINING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 205. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 206. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, 2025-2032 (USD MILLION)
  • TABLE 207. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 208. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 209. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 210. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 211. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 212. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY SOFTWARE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 213. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA MANAGEMENT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 214. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA MANAGEMENT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 215. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA MANAGEMENT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 216. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA MANAGEMENT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 217. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA MANAGEMENT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 218. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DATA MANAGEMENT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 219. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MODELING TOOLS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 220. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MODELING TOOLS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 221. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MODELING TOOLS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 222. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MODELING TOOLS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 223. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MODELING TOOLS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 224. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY MODELING TOOLS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 225. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY VISUALIZATION TOOLS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 226. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY VISUALIZATION TOOLS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 227. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY VISUALIZATION TOOLS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 228. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY VISUALIZATION TOOLS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 229. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY VISUALIZATION TOOLS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 230. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY VISUALIZATION TOOLS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 231. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEPLOYMENT, 2018-2024 (USD MILLION)
  • TABLE 232. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY DEPLOYMENT, 2025-2032 (USD MILLION)
  • TABLE 233. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CLOUD, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 234. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CLOUD, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 235. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CLOUD, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 236. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CLOUD, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 237. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CLOUD, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 238. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CLOUD, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 239. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY EDGE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 240. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY EDGE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 241. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY EDGE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 242. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY EDGE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 243. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY EDGE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 244. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY EDGE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 245. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HYBRID, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 246. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HYBRID, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 247. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HYBRID, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 248. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HYBRID, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 249. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HYBRID, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 250. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY HYBRID, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 251. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ON PREMISE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 252. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ON PREMISE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 253. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ON PREMISE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 254. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ON PREMISE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 255. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ON PREMISE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 256. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ON PREMISE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 257. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 258. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 259. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ACADEMIC RESEARCH, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 260. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ACADEMIC RESEARCH, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 261. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ACADEMIC RESEARCH, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 262. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ACADEMIC RESEARCH, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 263. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ACADEMIC RESEARCH, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 264. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY ACADEMIC RESEARCH, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 265. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CHEMICALS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 266. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CHEMICALS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 267. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CHEMICALS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 268. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CHEMICALS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 269. GLOBAL AI IN CHEMICAL & MATERIAL INFORMATICS MARKET SIZE, BY CHEMICALS, BY