![]() |
市場調查報告書
商品編碼
1853446
肝癌診斷市場按分期、最終用戶、檢測類型和技術分類-2025-2032年全球預測Liver Cancer Diagnostics Market by Disease Stage, End User, Test Type, Technology - Global Forecast 2025-2032 |
||||||
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2032 年,肝癌診斷市場規模將達到 169.7 億美元,複合年成長率為 6.76%。
| 主要市場統計數據 | |
|---|---|
| 基準年 2024 | 100.5億美元 |
| 預計年份:2025年 | 107.3億美元 |
| 預測年份:2032年 | 169.7億美元 |
| 複合年成長率 (%) | 6.76% |
由於技術創新、臨床實踐的轉變以及政策動態的變化,肝癌診斷領域正在迅速發展。本執行摘要了影響診斷路徑、診斷方式選擇和相關人員決策的最重要進展。接下來的章節將全面分析臨床趨勢、監管影響、技術成熟度和營運限制,從而闡明診斷領域相關人員的競爭格局和臨床現狀。
本分析旨在提供實用的綜合分析,以支援產品開發、商業營運和醫療系統實施等各環節的策略規劃。它重點關注多模態診斷方法如何融入診療路徑、實證醫學如何加速其應用,以及支付方的考慮如何影響醫療服務提供者的採納。本節著重闡述診斷靈敏度和特異性要求、微創檢測的需求以及早期發現以進行治療干預的驅動力之間的相互關係,從而為更深入的分析奠定基礎。
本報告優先考慮臨床策略、監管事務、報銷計劃和商業開發相關人員的理解和需求。過渡性說明結合了生物標記科學和成像技術的發展趨勢以及實驗室運作和門診診斷的實際考量,為後續更詳細的專題和區域分析奠定了基礎。
一系列變革性變化正在重塑肝癌的檢測、鑑別和治療方式。分子診斷和高靈敏度影像技術的進步使臨床醫生能夠更早掌握疾病進展,減少對侵入性檢查的依賴,同時提高腫瘤鑑別的精細度。同時,循環腫瘤DNA和微型RNA檢測與現有的蛋白質標記的整合,正在推動混合診斷策略的發展,從而在不同的臨床環境中平衡靈敏度和可操作性。
監管和報銷框架正在根據真實世界數據和前瞻性檢驗研究產生的證據進行調整,從而在臨床效用得到證實後加速推廣應用。醫療服務提供者擴大採用多模態診斷演算法,將影像學方法與標靶生物標記組合相結合,以輔助治療分層。同時,實驗室工作流程的創新和分散式檢查模式也促進了這一轉變,擴大了門診和診斷中心的可近性。
最後,次世代定序平台、先進生物資訊學和高解析度影像技術的融合,為精準診斷鋪平了道路,從而指導個人化治療方案的選擇。這些轉變降低了診斷的不確定性,縮短了確診時間,並為腫瘤內科醫生、介入放射科醫生和多學科腫瘤委員會提供了更多可操作的數據。
2025年關稅及貿易政策調整的實施,為診斷耗材、影像設備和分子檢測平台的籌資策略帶來了新的變數。供應鏈經理和採購主管正透過重新評估採購區域、與供應商談判長期合約、探索本地組裝以及尋找高效的二級供應商等方式來應對這些變化,以降低進口關稅及相關成本波動帶來的風險。
臨床醫生和實驗室負責人正感受到這些政策變化帶來的後續影響,例如試劑前置作業時間延長、影像處理硬體的資本支出增加,以及在購置成本上升的情況下,需要合理評估設備更換週期。在某些情況下,醫療系統優先投資於高通量、具成本效益的平台,並透過提高檢測量來分攤關稅的影響。另一些醫療系統則在重新評估影像升級和分子診斷擴展之間的資金分配,力求在不影響診斷準確性的前提下,找到既能保障患者就診又能兼顧診斷準確性的最佳方案。
重要的是,關稅動態的累積影響也將波及策略夥伴關係和授權模式。擁有多元化製造地和區域分銷網路的公司將更有利於維持業務連續性,而規模較小的供應商將被迫採取適應性定價策略和在地化支援模式。因此,決策者必須將貿易政策敏感性分析納入其採購和產品藍圖,以維持營運韌性並確保診斷服務的連續性。
基於細分市場的洞察揭示了疾病階段、最終用戶群、檢測類型和技術模式的不同需求和運作模式。就疾病階段而言,晚期流程著重於確診檢測和分子譜分析,以指導標靶治療;而早期流程則優先考慮高靈敏度篩檢方法和微創診斷,以支持治療性介入。這種權衡導致了侵入性和非侵入性檢測方式採用曲線的差異。
在所有終端使用者中,門診護理機構和診斷中心優先考慮快速週轉、便捷的樣本採集以及能夠支持大批量篩檢和分診的成本效益高的檢測方法;醫院重視全面的診斷能力,例如影像引導切片檢查和整合分子病理學;而實驗室則專注於檢測方法的開發和檢驗,通常會利用新一代和臨床實驗生物標記來推進其轉化研究流程。這些終端使用者的需求影響採購決策,並決定了在採購評估中哪些產品屬性(例如自動化程度、通量和監管狀態)會被優先考慮。
依檢測類型區分,可以更清楚展現市場動態。生物標記檢測可細分為基因標記和蛋白質標記物,其中基因標記包括循環腫瘤DNA檢測和微型RNA檢測,蛋白質標記包括甲胎蛋白(AFP)檢測和脫氧皮質醇(DCP)檢測。切片檢查方法包括粗針穿刺切片和細針穿刺活體組織切片,每種方法在組織獲取和併發症風險方面各有優劣。基因檢測技術涵蓋次世代定序和PCR分析,在覆蓋範圍和周轉時間方面各有不同。成像技術包括CT、MRI、PET和超音波,每種技術在病灶檢測、分期和治療方案製定方面都各具優勢。綜合以上細分,我們可以得出結論:投資於臨床檢驗、工作流程整合和與支付方的合作,將帶來最大的臨床和商業性效益。
最後,基於技術的細分不僅反映了檢測類別,更突出了特定檢測方式的應用促進要素:超音波具有便攜性和成本效益,適用於篩檢;CT 和 MRI 提供橫斷面細節資訊,適用於分期;PET 則有助於代謝特徵分析,從而改進分期和治療反應評估。將產品設計和證據產生與這些細分需求相匹配的策略性舉措,將提高臨床應用和在各種醫療機構中持續使用的可能性。
區域動態呈現出顯著的異質性,這取決於醫療基礎設施、法律規範、報銷機制和臨床實踐模式。在美洲,診斷生態系統強調在連網醫療系統和學術中心內快速採用創新技術,推動了三級醫院和門診診斷網路對整合分子和影像解決方案的需求。該地區在將實驗室證據轉化為臨床實踐方面通常發揮主導作用,對支持精準腫瘤學計劃的先進分子舉措表現出濃厚的興趣。
歐洲、中東和非洲的醫療技術應用環境呈現多元化的格局。雖然一些歐洲市場已建立起結構化的報銷管道和集中式參考實驗室,從而促進了已驗證檢測方法的標準化實施,但該地區其他部分仍面臨著醫療資源分配不均和資源匱乏的問題。中東和非洲的醫療衛生系統正加大對診斷能力建設的投入,旨在擴展影像基礎設施和實驗室,使其能夠同時進行傳統生物標記檢測和新興分子檢測。
亞太地區的特點是基礎設施投資快速成長、支付模式多樣化,以及部分市場擁有強大的本土製造能力。大都會圈的大型出版中心推動了對高解析度影像檢查和先進基因組檢測的需求,而專注於早期檢測的區域性計畫則加速了非侵入性生物標記的應用。在所有地區,跨境合作進行臨床檢驗和多中心研究正成為一種切實可行的機制,為更廣泛的應用和監管協調提供必要的證據。
肝癌診斷領域的競爭動態由成熟的診斷試劑製造商、專注於分子診斷的公司、影像設備供應商和臨床實驗室網路共同構成。市場領導憑藉其豐富的影像硬體、檢測試劑套件和整合軟體解決方案,保持差異化優勢,這些解決方案有助於數據解讀和工作流程整合。中型企業和創新新興企業則致力於開發特色檢測方法、新一代定序應用和微創生物標記組合,以滿足早期檢測和分子分型方面尚未滿足的需求。
診斷試劑開發人員與學術中心之間的策略夥伴關係能夠加速臨床檢驗,並支持生成指南納入所需的真實世界證據。投資於全面的臨床醫生教育、衛生經濟學資料以及與支付方溝通的公司在實施速度方面具有優勢。此外,能夠提供包括樣本物流、集中檢測服務和結果解讀彙報在內的端到端解決方案的供應商,對於尋求最大限度減輕內部營運負擔的醫院系統和診斷中心而言,也越來越具有吸引力。
供應鏈韌性、監管準備和生產規模化能力仍然是關鍵的差異化因素。能夠擴大試劑生產規模、在多個地區獲得監管批准並在臨床中心維持服務網路的企業,更有可能贏得臨床夥伴關係以及與醫療系統簽訂長期合約。產品團隊和商業領導者亟需將證據產生策略與臨床工作流程整合以及支付管道結合,將技術優勢轉化為持續的臨床應用。
產業領導者應優先考慮制定一套協調一致的策略,將產品開發、臨床證據產生和市場推廣模式有機結合,以最大限度地提高臨床應用率和商業性吸引力。投資於前瞻性研究,以證實其在早期檢測和治療分層方面的臨床效用,將對指南的採納和支付方的支持產生重大影響。同時,他們也應制定針對門診、診斷中心、醫院和研發機構的實施藍圖,以確保解決方案能夠根據各機構的實際情況進行最佳化。
在營運方面,建立靈活的製造地和區域分銷管道可以降低貿易成本波動帶來的風險,並確保供應的連續性。與學術醫療中心和大型醫院網路建立策略合作夥伴關係,可以建立參考站點,加速臨床檢驗並促進同行採用。在商業性,採用經證實具有健康經濟效益的定價模式,並提供從集中檢測到床邊平台等分級服務選項,可以擴大產品在各種醫療保健環境中的應用場景。
最後,領導者應投資於臨床醫生的教育和決策支援工具,這些工具能夠將分子、蛋白質和影像數據整合到可操作的報告中。這些工具透過減少解讀障礙並提供從診斷結果到治療決策的清晰路徑,縮短了應用曲線。這些工具共同作用,既能實現負責任的規模化應用,又能為患者帶來具有臨床意義的改進。
本分析採用混合方法,整合了第一手和第二手證據,兼顧定量檢驗和定性背景分析。主要資料來源包括對臨床專家、實驗室主任、採購主管和行業高管的訪談,旨在了解實際營運和策略意圖。研究觀點對這些訪談內容進行了系統編碼,以識別診斷方法應用、工作流程整合和支付方參與方面的共同主題。
二次研究包括對同行評審的臨床文獻、監管指導文件和專業學會建議進行結構化審查,以根據當前的護理標準和證據閾值提供見解。技術評估評估了分子檢測、切片檢查方法和成像方法的分析性能特徵、平台互通性和工作流程注意事項。供應鏈和政策分析納入了公開的貿易和採購訊息,以評估其對採購和資本投資決策的潛在影響。
在條件允許的情況下,我們利用多個資料流對研究結果進行三角驗證,以提高其有效性。我們也承認研究存在一些局限性,例如數據可用性的區域差異以及新興生物標記臨床檢驗的持續發展。為了克服這些限制,我們進行了敏感度分析並舉辦了專家檢驗研討會,以確保所提出的建議既能反映實證依據,又能兼顧在不同臨床環境中實施的可行性。
總之,肝癌診斷格局正朝向整合式、多模態方法轉變,力求在敏感度、特異性和即時操作性之間取得平衡。基因組檢測和影像技術的進步不斷拓展診斷套件,實現更早期的檢測和更精準的分期,從而指導治療決策。政策和採購動態,包括關稅相關影響,正推動更具策略性的採購和資本規劃,以確保醫療服務的可近性和營運的連續性。
細分市場分析表明,針對早期疾病和晚期疾病的不同需求,以及門診中心、醫院、診斷中心和實驗室的具體營運限制,制定量身定做的策略,將最有效地推動永續推廣。區域差異凸顯了本地證據產生、醫保報銷協調和能力建構舉措的重要性。競爭對手更青睞那些整合了強大的臨床檢驗、可擴展的生產能力和切實可行的商業模式,從而降低推廣門檻的機構。
綜上所述,這些主題曲折點:對實證醫學、工作流程整合和供應鏈韌性的協調投資將決定哪些技術和供應商能夠擴大規模並帶來可衡量的臨床效益。那些採取果斷行動,最佳化其臨床證據、商業性策略和營運準備的相關人員,將更有利於改善肝癌診斷路徑和患者預後。
The Liver Cancer Diagnostics Market is projected to grow by USD 16.97 billion at a CAGR of 6.76% by 2032.
| KEY MARKET STATISTICS | |
|---|---|
| Base Year [2024] | USD 10.05 billion |
| Estimated Year [2025] | USD 10.73 billion |
| Forecast Year [2032] | USD 16.97 billion |
| CAGR (%) | 6.76% |
The landscape of liver cancer diagnostics is undergoing rapid evolution driven by technological innovation, clinical practice changes, and shifting policy dynamics. This executive summary distills the most consequential developments shaping diagnosis pathways, diagnostic modality adoption, and stakeholder decision-making. The following pages synthesize clinical trends, regulatory influences, technology maturation, and operational constraints that together define the competitive and clinical milieu for diagnostic stakeholders.
The intent of this analysis is to provide an actionable synthesis that supports strategic planning across product development, commercial operations, and health system adoption. Emphasis is placed on how multi-modal diagnostic approaches are being integrated into care pathways, where evidence generation is accelerating uptake, and how payer considerations are influencing provider implementation. This section establishes the foundation for deeper insights, highlighting the interplay between diagnostic sensitivity and specificity requirements, the need for minimally invasive testing, and the push for earlier detection to enable curative-intent interventions.
Throughout the report, we prioritize clarity and relevance for leaders responsible for clinical strategy, regulatory affairs, reimbursement planning, and commercial deployment. Transitional commentary connects trends in biomarker science and imaging technology with pragmatic considerations in laboratory operations and ambulatory diagnostics, setting the stage for the more detailed thematic and regional analyses that follow.
A confluence of transformative shifts is reshaping how liver cancer is detected, characterized, and managed. Advancements in molecular diagnostics and high-sensitivity imaging are enabling clinicians to move earlier in the disease course, improving the granularity of tumor characterization while reducing reliance on highly invasive procedures. Concurrently, the integration of circulating tumor DNA and microRNA assays with established protein markers is fostering hybrid diagnostic strategies that balance sensitivity with operational feasibility in diverse care settings.
Regulatory and reimbursement frameworks are adapting to evidence generated by real-world data and prospective validation studies, which in turn accelerates adoption when clinical utility is demonstrated. Healthcare providers are increasingly adopting multi-disciplinary diagnostic algorithms that leverage imaging modalities in parallel with targeted biomarker panels to support treatment stratification. This shift is complemented by laboratory workflow innovations and decentralized testing models that expand access in ambulatory care and diagnostic center environments.
Finally, technological convergence-where next-generation sequencing platforms, advanced bioinformatics, and higher-resolution imaging intersect-creates pathways for precision diagnostics that inform individualized therapeutic choices. These shifts collectively reduce diagnostic uncertainty, shorten time to definitive diagnosis, and generate more actionable data for oncologists, interventional radiologists, and multidisciplinary tumor boards.
The introduction of tariffs and trade policy adjustments in 2025 has introduced new variables into procurement strategies for diagnostic consumables, imaging equipment, and molecular testing platforms. Supply chain managers and procurement leads are responding by reassessing sourcing geographies, negotiating longer-term supplier agreements, and exploring local assembly or validated secondary suppliers to mitigate exposure to import duties and associated cost volatility.
Clinicians and laboratory directors are experiencing the downstream effects of these policy changes through altered lead times for reagents, increased capital expenditure considerations for imaging hardware, and the need to justify equipment replacement cycles against a backdrop of elevated acquisition costs. In some cases, health systems are prioritizing investments in high-throughput, cost-efficient platforms that amortize tariff impacts over larger testing volumes. Others are re-evaluating capital allocation between imaging upgrades and molecular diagnostic expansion, seeking the optimal mix to sustain patient access without compromising diagnostic fidelity.
Importantly, the cumulative impact of tariff dynamics also influences strategic partnerships and licensing models. Firms with diversified manufacturing footprints and regional distribution hubs are better positioned to maintain continuity, while smaller vendors are compelled to adopt adaptive pricing strategies or localized support models. Decision-makers must therefore incorporate trade policy sensitivity analyses into procurement and product roadmaps to preserve operational resilience and maintain continuity of diagnostic services.
Segmentation-driven insight reveals distinct demand and operational patterns across disease stage, end-user profiles, test types, and technology modalities. When considering disease stage, advanced-stage workflows emphasize confirmatory testing and molecular profiling to inform targeted therapies, whereas early-stage pathways prioritize high-sensitivity screening approaches and minimally invasive diagnostics that support curative interventions. This dichotomy drives differential adoption curves for invasive versus noninvasive modalities.
Across end users, ambulatory care settings and diagnostic centers prioritize rapid turnaround, ease of sample collection, and cost-effective assays to support high-volume screening and triage; hospitals emphasize comprehensive diagnostic capabilities including image-guided biopsies and integrated molecular pathology; research laboratories focus on assay development and validation, often leveraging next-generation sequencing and investigational biomarkers to advance translational pipelines. These end-user imperatives shape procurement decisions and influence which product attributes-such as automation, throughput, and regulatory status-are prioritized in purchasing evaluations.
Test-type differentiation further clarifies market dynamics. Biomarker testing subdivides into genetic markers and protein markers, with genetic markers comprising circulating tumor DNA tests and microRNA assays, and protein markers encompassing AFP tests and DCP assays. Biopsy modalities include core needle biopsy and fine needle aspiration, each with trade-offs in tissue yield and complication risk. Genetic testing techniques span next-generation sequencing and PCR analysis, offering distinct profiles in breadth of coverage and turnaround. Imaging technologies include CT, MRI, PET, and ultrasound, with each modality delivering unique strengths in lesion detection, staging, and treatment planning. Taken together, these layered segmentation dimensions inform where investment in clinical validation, workflow integration, and payor engagement will yield the highest clinical and commercial impact.
Finally, technology-based segmentation mirrors testing categories but highlights modality-specific adoption drivers: ultrasound offers portability and cost-efficiency for screening, CT and MRI provide cross-sectional detail for staging, and PET contributes metabolic characterization that refines staging and therapeutic response assessment. Strategic initiatives that align product design and evidence generation with these segmented needs increase the likelihood of clinical adoption and sustained utilization across care settings.
Regional dynamics exhibit meaningful heterogeneity driven by healthcare infrastructure, regulatory frameworks, reimbursement mechanisms, and clinical practice patterns. In the Americas, diagnostic ecosystems emphasize rapid innovation adoption within networked health systems and academic centers, fueling demand for integrated molecular and imaging solutions in tertiary hospitals and ambulatory diagnostic networks. This region often leads in the translation of clinical trial evidence into practice and demonstrates a strong appetite for advanced molecular profiling to support precision oncology initiatives.
Europe, Middle East & Africa presents a mosaic of adoption environments. Certain European markets demonstrate structured reimbursement pathways and centralized reference laboratories that facilitate standardized implementation of validated assays, while other geographies within the region contend with variability in access and resource constraints. Middle Eastern and African health systems are increasingly investing in diagnostic capacity building, with targeted initiatives to expand imaging infrastructure and laboratory capabilities that can accommodate both conventional biomarkers and emerging molecular assays.
Asia-Pacific is characterized by rapid infrastructure investment, diverse payer models, and strong domestic manufacturing capacities in select markets. High-capacity referral centers in major metropolitan areas drive demand for both high-resolution imaging and advanced genomic testing, while regional programs focused on early detection are accelerating uptake of noninvasive biomarkers. Across all regions, cross-border collaboration in clinical validation and multi-center studies is becoming a practical mechanism to generate the evidence needed for broader adoption and regulatory alignment.
Competitive dynamics in liver cancer diagnostics are defined by a mix of established diagnostic manufacturers, specialized molecular diagnostics firms, imaging vendors, and clinical laboratory networks. Market leaders sustain differentiated positions through broad portfolios that span imaging hardware, assay kits, and integrated software solutions that facilitate data interpretation and workflow integration. Mid-sized firms and innovative start-ups contribute by advancing niche assays, next-generation sequencing applications, and minimally invasive biomarker panels that address unmet needs in early detection and molecular subtyping.
Strategic partnerships between diagnostic developers and academic centers accelerate clinical validation and support the generation of real-world evidence necessary for guideline inclusion. Companies that invest in comprehensive clinician education, health economic dossiers, and payer engagement accrue advantages in adoption speed. Additionally, vendors that provide end-to-end solutions-encompassing sample logistics, centralized testing services, and interpretive reporting-are increasingly attractive to hospital systems and diagnostic centers seeking to minimize internal operational burden.
Supply chain resilience, regulatory preparedness, and scalability of manufacturing remain critical differentiators. Organizations that demonstrate the ability to scale reagent production, secure multi-regional regulatory clearances, and maintain service networks in clinical settings are better positioned to capture clinical partnerships and long-term contracts with health systems. For product teams and commercial leaders, the imperative is to align evidence-generation strategies with clinical workflow integration and payer pathways to translate technological advantage into durable clinical adoption.
Industry leaders should prioritize a cohesive strategy that aligns product development, clinical evidence generation, and go-to-market models to maximize clinical uptake and commercial traction. Investing in prospective studies that demonstrate clinical utility in early-stage detection and treatment stratification will materially influence guideline adoption and payer support. Concurrently, companies should develop implementation roadmaps tailored to ambulatory care, diagnostic centers, hospitals, and research laboratories to ensure solutions are optimized for the operational realities of each setting.
Operationally, building flexible manufacturing footprints and regional distribution channels reduces exposure to trade-related cost fluctuations and ensures continuity of supply. Strategic collaborations with academic medical centers and large hospital networks accelerate clinical validation and create reference sites that catalyze peer adoption. On the commercial front, aligning pricing models with demonstrated health economic benefits and offering tiered service options-ranging from centralized testing to near-patient platforms-can expand addressable use cases across diverse care settings.
Finally, leaders should invest in clinician-facing education and decision-support tools that integrate molecular, protein, and imaging data into actionable reports. These tools shorten the adoption curve by reducing interpretation friction and demonstrating clear pathways from diagnostic output to therapeutic decision. Taken together, these actions will enable organizations to scale responsibly while delivering clinically meaningful improvements in patient pathways.
This analysis synthesizes primary and secondary evidence sources using a mixed-methods approach that balances quantitative validation with qualitative contextualization. Primary inputs include interviews with clinical experts, laboratory directors, procurement leads, and industry executives to capture operational realities and strategic intent. These perspectives were systematically coded to identify recurring themes in diagnostic adoption, workflow integration, and payer engagement.
Secondary research involved a structured review of peer-reviewed clinical literature, regulatory guidance documents, and professional society recommendations to ground insights in current standards of care and evidence thresholds. Technology assessments evaluated analytic performance characteristics, platform interoperability, and workflow considerations for molecular assays, biopsy techniques, and imaging modalities. Supply chain and policy analyses incorporated publicly available trade and procurement information to assess potential impacts on sourcing and capital investment decisions.
Where possible, findings were triangulated across multiple data streams to enhance validity. Limitations are acknowledged, including variability in regional data availability and the evolving nature of clinical validation for emerging biomarkers. To mitigate these constraints, sensitivity analyses and expert validation workshops were employed, ensuring the recommendations reflect both empirical evidence and practical feasibility for implementation across varied care settings.
In summary, the diagnostic landscape for liver cancer is transitioning toward integrated, multi-modal approaches that balance sensitivity, specificity, and operational feasibility across care settings. Technological advances in genomic assays and imaging continue to expand the diagnostic toolkit, enabling earlier detection and more precise staging that inform therapeutic decision-making. Policy and procurement dynamics, including tariff-related effects, are prompting more strategic sourcing and capital planning to preserve access and operational continuity.
Segmentation analyses indicate that tailored strategies addressing the distinct needs of early versus advanced disease stages, and the specific operational constraints of ambulatory centers, hospitals, diagnostic centers, and research labs, will drive the most sustainable adoption. Regional differences underscore the importance of localized evidence generation, reimbursement alignment, and capacity-building initiatives. Competitive trajectories favor organizations that integrate robust clinical validation, scalable manufacturing, and pragmatic commercial models that lower barriers to adoption.
Collectively, these themes point to an inflection point where coordinated investment in evidence, workflow integration, and supply chain resilience will determine which technologies and providers deliver measurable clinical benefit at scale. Stakeholders that act decisively to align clinical evidence, commercial strategy, and operational readiness will be best positioned to improve diagnostic pathways and patient outcomes in liver cancer.