![]() |
市場調查報告書
商品編碼
1830595
建築一體成型光伏建築幕牆市場(按技術類型、組件、材料類型、設計、安裝類型和最終用戶分類)—2025-2032 年全球預測Building-Integrated Photovoltaics Facade Market by Technology Type, Component, Material Type, Design, Installation Type, End-User - Global Forecast 2025-2032 |
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2032 年,建築一體化太陽能建築幕牆市場將成長 151.4 億美元,複合年成長率為 19.44%。
主要市場統計數據 | |
---|---|
基準年2024年 | 36.5億美元 |
預計2025年 | 43.3億美元 |
預測年份:2032年 | 151.4億美元 |
複合年成長率(%) | 19.44% |
建築一體化光電建築幕牆正成為建築願景與能源系統轉型之間的融合點。建築師、開發商和能源規劃師擴大將建築幕牆視為不僅僅是防風雨的外牆,而是一個活躍的建築系統,它不僅能產生清潔電力,還能提升視覺識別度、熱性能和居住者舒適度。這種整合需要跨學科的密切合作,從早期概念設計,到光伏材料和電力系統平衡組件的採購,再到長期營運規劃。
因此,企劃團隊在美觀目標與電氣性能、耐用性和生命週期考量之間尋求平衡。設計師正在試驗半透明和圖案化的模組,以保留日光和視野;工程師則在最佳化安裝系統和逆變器,以最大限度地降低熱應力,並在複雜的遮光條件下實現能量產量最大化。同時,開發商和資產管理者正在評估如何將建築幕牆整合發電與更廣泛的永續性目標、現場能源管理策略和建築認證框架結合。
因此,BIPV建築幕牆領域是一個系統級整合,而非單一技術。成功的關鍵在於協調材料科學、結構工程和能源控制,從而降低安裝風險、簡化許可流程,並為最終用戶創造可觀的價值。本執行摘要提供了當前的市場動態、監管影響、細分洞察、區域考慮、競爭動態以及針對尋求利用 BIPV建築幕牆機遇的組織的實用建議。
在材料進步、政策干預和相關人員不斷變化的期望的推動下,建築一體化太陽能建築幕牆的格局正在轉變。日趨成熟的技術正在拓寬可行的選擇範圍,使設計師能夠根據效率、透明度和外形規格之間的權衡,在晶體和薄膜解決方案之間進行選擇。同時,玻璃層壓板、聚合物封裝和模組框架的創新正在減少傳統建築幕牆美觀度和電氣性能之間的妥協。
政策和監管變化對能源採用路徑施加了並行的壓力。建築規範擴大參考能源性能和自發電,而獎勵計劃和採購標準則引導業主選擇低碳建築解決方案。金融產品和綠色貸款標準也正在重塑資本配置,使得將分散式發電融入建築圍護提案對一些業主來說更具吸引力。隨著相關人員對生命週期成本和總擁有成本的認知日益加深,維護計畫和保固的一致性在採購對話中變得越來越重要。
在營運方面,增強型監控、模組化逆變器架構和智慧控制使建築幕牆能夠作為分散式能源進行管理,並與暖通空調系統、需量反應程序和建築自動化平台進行互動。因此,整合策略正在從孤立的裝置轉向參與整體能源系統,為建築業主釋放新的收益來源和韌性效益。這些變化標誌著從小眾實驗轉向主流設計和開發工作流程。
2025年關稅徵收和貿易政策調整引入了新的變量,影響了BIPV建築幕牆生態系統的採購、製造和計劃規劃。供應鏈對此作出了回應,重新評估了籌資策略,許多相關人員優先考慮供應商多元化和近岸外包,以減輕關稅引發的成本波動的影響。實際上,為了在不確定的貿易環境中維持計劃經濟效益,對原產國條款、組件級採購和合約保護措施的審查更加嚴格。
同時,關稅活性化了關於國內製造能力和本地化價值鏈作用的爭論。開發商和投資者越來越重視垂直整合供應模式的優勢,將模組製造、系統組裝和建築幕牆工程融為一體。這種轉變可以縮短前置作業時間,提高定價的可預測性,但需要資本投入和技術能力的提升。
從計劃管線的角度來看,採購團隊正在重新考慮採購時間表和合約結構,以提升靈活性。製造商和經銷商正在更新其產品路線圖,重點關注減少對受關稅影響的投入品依賴的設計,例如替代封裝和使用藍圖較低的材料的創新金屬化技術。此外,針對關稅的政策反應,例如對國內生產的激勵措施和對某些技術的關稅豁免,正在影響投資流向,並決定哪些設計選擇具有財務優勢。
最終,電價情勢並未改變建築幕牆一體化發電的根本吸引力,但它改變了風險管理、供應商選擇和資本規劃的考量。那些採取靈活籌資策略並專注於供應商夥伴關係的企業將能夠更好地應對貿易相關的不利因素。
從這一細分領域獲得的競爭考察揭示了技術選擇、組件架構、材料選擇和設計方法的交匯,從而定義了競爭差異化和應用路徑。根據技術類型,相關人員必須在晶體矽 (c-Si) BIPV 和薄膜 BIPV 之間做出選擇。在 c-Si 領域,市場進一步細分為單晶矽和多晶兩種方案,每種方案的效率和整合度考量各不相同。薄膜方案涵蓋非晶質(a-Si)、碲化鎘 (CdTe) 和銅銦鎵硒 (CIGS),它們提供多種外形規格和透明度特性。組件級細分凸顯了逆變器、安裝結構和光伏組件的重要性,揭示了系統平衡方案的選擇如何影響安裝複雜性、與建築控制的互通性以及長期可維護性。
材料細分凸顯了玻璃、金屬和聚合物解決方案在建築幕牆應用上的權衡利弊。當透明度、耐用性和防火性能至關重要時,玻璃仍然是首選材料,而金屬和聚合物面板則為輕量化組件和創意表面形態提供了可能性。設計主導的細分,包括建築幕牆、半透明和透明的BIPV建築幕牆,說明了採光、熱負荷和視覺隱私要求如何直接影響組件的選擇和安裝策略。
新建建築最有可能最佳化結構完整性、電線佈線和建築幕牆連續性,而維修需要創新的安裝系統並仔細評估現有外牆狀況。辦公室和零售空間等商業應用優先考慮居住者舒適度和業務永續性,工業應用則強調穩健性和營運連續性,機構應用則優先考慮長期性能和法規遵循。總而言之,這些細分領域為產品藍圖、夥伴關係模式和上市策略提供了資訊,使技術能力與特定行業標準保持一致。
區域動態至關重要,因為不同地區的法律規範、電網特徵和建築規範差異巨大。美洲市場的促進因素包括州級建築規範、獎勵機制和企業永續性承諾,這些因素影響開發商對建築幕牆一體化發電的需求,以及維修與新建的經濟性。供應鏈物流和港口基礎設施也影響籌資策略以及大型模組和專用組件的供應。
在歐洲、中東和非洲,許多歐洲市場推出了更嚴格的法規並設定了雄心勃勃的脫碳目標,這推動著清潔能源技術更多地融入建築環境。而在中東,機會則集中在能夠應對極端太陽輻射和溫度控管的高性能建築幕牆。非洲擁有與都市化和分散能源需求相關的成長潛力,儘管在資金籌措和實施方面存在明顯的挑戰。建築規範和當地認證系統將影響產品在這些不同環境下的接受度。
在亞太地區,快速的城市發展、密集的建設計畫以及強大的製造能力為BIPV建築幕牆的部署提供了充滿活力的背景。該地區的製造地支持模組生產的規模經濟,而不斷發展的城市政策則推動計劃和維修計劃中現場發電的採用。在每個地區,電網連接法規、當地勞動力技能以及特定氣候條件下的性能要求等跨領域考慮因素將繼續影響哪些計劃模式可行以及開發商如何優先考慮建築幕牆整合解決方案。
BIPV建築幕牆領域企業之間的競爭與合作正在推動產品改進和系統級創新。領先的公司正在擴展其產品線,不僅提供單一組件,還提供整合安裝解決方案、電力系統平衡組件、數位監控平台等的工程建築幕牆系統。同時,專業供應商和建築幕牆工程公司也透過為建築師主導的計劃提供設計服務、客製化組件形狀和嵌裝玻璃整合能力,脫穎而出。
製造商、嵌裝玻璃專家和建築幕牆安裝商之間的夥伴關係日益普遍,形成了垂直協調的供應鏈,從而降低了介面風險並簡化了專案提供。服務和維護提供者也正在成為生態系統的關鍵參與者,提供效能保證、預測性維護計劃和長期資產管理服務,以滿足機構採購的期望。研發投資專注於增強組件的耐用性、改善照度性能,以及開發能夠在保持透明度和色彩一致性的同時抵禦環境壓力的層壓技術。
此外,公司策略通常包括先導計畫和現場演示,以檢驗系統性能並增強建築業主和負責人的信心。這些部署作為證明點,彌合了實驗室性能與實際操作之間的差距,從而加速了建築師、開發商和設施經理的接受度,而他們通常認為安裝風險是採用該系統的主要障礙。
對於希望將機會轉化為永續優勢的產業領導者,建議採取的行動涵蓋策略採購、產品開發和相關人員參與。首先,優先考慮供應商多元化和靈活的採購契約,以減少貿易政策衝擊的影響,並確保關鍵零件的供應連續性。這種方法應與積極的供應商開發計劃相結合,在關鍵市場附近建立能力,縮短前置作業時間,並實現客製化。
其次,投資整合式建築幕牆解決方案,將模組、安裝系統和數位監控系統整合到可設定的平台中。這些平台必須簡化建築師和承包商的規範,降低安裝風險,並提供清晰的維運路徑。第三,透過提供針對玻璃、金屬和聚合物的特定應用選項,並支援符合最終用戶優先順序的不透明、半透明和透明配置,使產品開發與材料和設計細分洞察保持一致。
第四,我們將與監管機構、認證機構和標準組織密切合作,明確性能指標、消防安全標準以及互連要求。積極參與將有助於加快核准並減少計劃延誤。第五,我們將優先進行試點項目,這些項目將在實際環境中展示生命週期性能,並量化其對居住者體驗、能源管理和維護成本的影響。第六,我們將發展資金籌措和經營模式,以應對分散獎勵的挑戰,例如租賃、購電協議和基於績效的合約方式,使更多業主能夠實現建築幕牆整合。最後,我們將強大的數據分析和遠端監控功能融入我們的產品中,以支援預測性維護、保固執行和長期性能檢驗。
本執行摘要所依據的研究結合了對專家的初步定性訪談、對組件架構的技術檢驗以及對重點地區監管和政策發展的系統性回顧。初步研究包括與建築師、建築幕牆工程師、製造商和設施經理進行結構化諮詢,以了解設計整合、安裝順序和長期營運的實際限制。這些對話促成了符合實際規範的技術和材料選擇分類。
次要分析包括查閱太陽能材料、結構玻璃系統和系統元件的技術文獻,以及建築規範更新和獎勵計劃設計。數據三角測量用於協調採購專業人員聲明的偏好與試點實施中觀察到的行為之間的差異,從而對採用障礙和推動因素形成平衡的視角。情境分析用於探索政策、關稅和地區建築規範的變化如何改變採購時間表和供應商策略。
在整個調查方法中,我們實施了保障措施,包括透過多個獨立資訊來源對研究成果進行交叉檢驗、透明地記錄假設,以及強調可重複的分析程序。需要持續監測以保持策略建議的有效性。
摘要,建築一體化光電建築幕牆融合了美學、技術和能源性能目標,重新定義了建築環境如何促進脫碳目標的實現。包括晶體和薄膜系統在內的多樣化技術,加上材料和安裝系統的進步,正在為建築師和開發商拓展可行的設計方案。同時,政策轉變和貿易發展正在重塑供應鏈和籌資策略,更加重視供應商的韌性和本地製造能力。
細分市場主導的分析表明,該領域的贏家將是那些根據最終用戶需求客製化產品的公司,例如為高舒適度商業空間提供透明嵌裝玻璃,為工業建築提供堅固的模組,以及為維修場景提供輕質聚合物面板。區域差異凸顯了針對特定市場的市場進入策略的必要性,這些策略要考慮到監管差異、電網特性和建築實踐。競爭動態有利於垂直整合的解決方案和夥伴關係,從而降低介面風險並加快上市時間。
最終,要充分發揮建築幕牆一體化光電的潛力,需要設計公司、製造商、監管機構和金融機構之間的協調行動。透過採用靈活的籌資策略、投資整合產品平台以及透過先導計畫展示實際性能,相關人員可以減少採用過程中的摩擦,並釋放建築一體化光伏建築幕牆為建築物、居住者和更廣泛的能源系統提供的多方面價值。
The Building-Integrated Photovoltaics Facade Market is projected to grow by USD 15.14 billion at a CAGR of 19.44% by 2032.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 3.65 billion |
Estimated Year [2025] | USD 4.33 billion |
Forecast Year [2032] | USD 15.14 billion |
CAGR (%) | 19.44% |
Building-integrated photovoltaic facades are emerging as a convergence point between architectural ambition and energy system transformation. Architects, developers, and energy planners increasingly view facades not merely as weatherproof envelopes but as active building systems that generate clean electricity while contributing to visual identity, thermal performance, and occupant comfort. This integration demands close coordination across disciplines, from early-stage concept design to procurement of photovoltaic materials, electrical balance-of-system components, and long-term operations planning.
As a result, project teams are balancing aesthetic objectives with electrical performance, durability, and lifecycle considerations. Designers are experimenting with semi-transparent and patterned modules to maintain daylighting and views, while engineers optimize mounting systems and inverters to minimize thermal stress and maximize energy yield under complex shading. Meanwhile, developers and asset managers are assessing how facade-integrated generation can intersect with broader sustainability targets, on-site energy management strategies, and building certification frameworks.
Consequently, the BIPV facade landscape is less about a single technology and more about systems-level integration. Success hinges on harmonizing material science, structural engineering, and energy controls in ways that reduce installation risk, streamline approvals, and create demonstrable value for end-users. This executive summary synthesizes current market dynamics, regulatory influences, segmentation insights, regional considerations, competitor behaviors, and pragmatic recommendations for institutions seeking to capitalize on BIPV facade opportunities.
The landscape for building-integrated photovoltaic facades is undergoing transformative shifts driven by advances in materials, policy interventions, and evolving stakeholder expectations. Technological maturation has broadened the palette of viable options, enabling designers to choose between crystalline and thin-film solutions depending on trade-offs among efficiency, transparency, and form factor. At the same time, innovations in glass lamination, polymer encapsulants, and module framing have reduced the traditional compromises between facade aesthetics and electrical performance.
Policy and regulatory changes are exerting parallel pressure on adoption pathways. Building codes increasingly reference energy performance and on-site generation, while incentive programs and procurement standards are nudging owners toward low-carbon building solutions. Financial instruments and green lending criteria are also reshaping capital allocation, making distributed generation integrated into the building envelope a more attractive value proposition for some owners. As stakeholders become more sophisticated about lifecycle costs and total cost of ownership, maintenance planning and warranty alignment are gaining prominence in procurement conversations.
Operationally, enhanced monitoring, modular inverter architectures, and smart controls allow facades to be managed as distributed energy resources that interact with HVAC systems, demand response programs, and building automation platforms. As a consequence, integration strategies are pivoting from isolated installations to holistic energy system participation, unlocking new revenue streams and resilience benefits for building owners. Taken together, these shifts signal a move from niche experimental deployments to mainstream consideration within design and development workflows.
The imposition of tariffs and trade policy adjustments in 2025 has introduced a new set of variables that affect the BIPV facade ecosystem across procurement, manufacturing, and project planning. Supply chains responded by reassessing sourcing strategies, with many stakeholders prioritizing supplier diversification and nearshoring to mitigate exposure to tariff-driven cost volatility. In practice, this has led to greater scrutiny of origin clauses, component-level sourcing, and contractual protections to preserve project economics in an uncertain trade environment.
At the same time, tariff measures have intensified conversations about domestic manufacturing capabilities and the role of localized value chains. Developers and investors are increasingly weighing the benefits of vertically integrated supply models that combine module fabrication, system assembly, and facade engineering under one umbrella. This shift can shorten lead times and provide more predictable pricing, but it also requires capital commitment and technical capability development.
From a project pipeline perspective, procurement teams are revisiting sourcing timetables and contract structures to incorporate greater flexibility. Manufacturers and distributors are updating product roadmaps to emphasize designs that reduce reliance on tariff-affected inputs, such as alternative encapsulants or innovative metallization techniques that use less constrained materials. Furthermore, policy responses to tariffs-such as incentives for onshore production or tariff exemptions for certain technologies-are shaping where investments flow and which design choices become financially favorable.
Ultimately, the tariff landscape has not altered the fundamental attractiveness of facade-integrated generation, but it has changed the calculus for risk management, supplier selection, and capital planning. Organizations that respond with adaptable sourcing strategies and a focus on supplier partnerships are positioned to navigate the trade-related headwinds more effectively.
Insights from segmentation reveal where technology choices, component architectures, material selection, and design approaches intersect to define competitive differentiation and deployment pathways. Based on technology type, stakeholders must choose between Crystalline Silicon (c-Si) BIPV and Thin-Film BIPV; within c-Si, decisions further bifurcate into Monocrystalline and Polycrystalline silicon approaches, each with distinct efficiency and integration considerations, while Thin-Film options span Amorphous Silicon (a-Si), Cadmium Telluride (CdTe), and Copper Indium Gallium Selenide (CIGS), which offer varied form factors and transparency characteristics. Component-level segmentation highlights the importance of inverters, mounting structures, and PV modules, underscoring how balance-of-system choices influence installation complexity, interoperability with building controls, and long-term maintainability.
Material type segmentation underscores trade-offs between glass, metal, and polymer solutions for facade applications. Glass remains the preferred medium where transparency, durability, and fire performance are paramount, whereas metal and polymer panels provide opportunities for lightweight assemblies and creative surface geometries. Design-driven segmentation-encompassing opaque BIPV facades, semi-transparent BIPV facades, and transparent BIPV facades-illustrates how daylighting, thermal loads, and visual privacy requirements directly shape module selection and mounting strategies.
Installation type is another critical lens: new construction provides the greatest opportunity to optimize structural integration, electrical routing, and facade continuity, while retrofit installation demands inventive attachment systems and careful assessment of existing envelope conditions. End-user segmentation reveals distinct application logics across commercial, industrial, institutional, and residential sectors; commercial use cases, such as office and retail spaces, prioritize occupant comfort and corporate sustainability signaling, whereas industrial deployments focus on robustness and operational continuity, and institutional projects emphasize long-term performance and regulatory compliance. Collectively, these segmentation insights inform product roadmaps, partnership models, and go-to-market tactics that align technical capabilities with sector-specific decision criteria.
Regional dynamics matter because regulatory frameworks, grid characteristics, and construction norms vary significantly across geographies. In the Americas, market drivers include the interplay between state-level building codes, incentive structures, and corporate sustainability commitments, which together influence developer appetite for facade-integrated generation and the economics of retrofits versus new builds. Supply chain logistics and port infrastructure also shape procurement strategies and the feasibility of sourcing larger modules or specialized components.
In Europe, Middle East & Africa, regulatory stringency and ambitious decarbonization targets in many European markets have fostered advanced integration of clean energy technologies into the built environment, while Middle Eastern opportunities focus on high-performance facades that address extreme solar irradiance and thermal management. Africa presents growth potential tied to urbanization and distributed energy needs, albeit with distinct financing and execution challenges. Building codes and local certification schemes affect product acceptance across these varied contexts.
Across Asia-Pacific, rapid urban development, dense construction programs, and strong manufacturing capabilities create a dynamic backdrop for BIPV facade deployment. Regional manufacturing hubs support scale advantages for module production, while evolving urban policies are prompting greater adoption of on-site generation in both new and retrofit projects. In each region, cross-cutting considerations such as grid interconnection rules, local labor skills, and climate-specific performance requirements will continue to govern which project models are viable and how developers prioritize facade-integrated solutions.
Competition and collaboration among firms in the BIPV facade space are driving both incremental product improvements and system-level innovation. Leaders are expanding offerings beyond individual modules to provide engineered facade systems that integrate mounting solutions, electrical balance-of-system components, and digital monitoring platforms. At the same time, specialized suppliers and facade engineering firms are differentiating through design services, bespoke module shapes, and glazing integration capabilities that cater to architect-driven projects.
Partnerships between manufacturers, glazing specialists, and facade installers are increasingly common, creating vertically coordinated supply chains that reduce interface risk and streamline project delivery. Service and maintenance providers are also emerging as important ecosystem players, offering performance guarantees, predictive maintenance programs, and long-term asset management services that align with institutional procurement expectations. Research and development investments focus on enhancing module durability, improving low-light performance, and developing lamination techniques that protect against environmental stressors while preserving transparency and color consistency.
Furthermore, corporate strategies frequently include pilot projects and live demonstrations to validate system performance and to build confidence among building owners and code officials. These deployments serve as proof points that bridge the gap between laboratory performance and real-world operational behavior, thereby accelerating acceptance among architects, developers, and facility managers who often cite installation risk as a primary barrier to adoption.
For industry leaders aiming to translate opportunity into durable advantage, the recommended actions span strategic sourcing, product development, and stakeholder engagement. First, prioritize supplier diversification and flexible procurement contracts to reduce exposure to trade policy shocks and to secure supply continuity for critical components. This approach should be paired with active supplier development programs that build capabilities closer to key markets, thereby shortening lead times and enabling customization.
Second, invest in integrated facade solutions that bundle modules, mounting systems, and digital monitoring into configurable platforms. These platforms should simplify specification for architects and contractors, reduce installation risk, and provide clear O&M pathways. Third, align product development with material and design segmentation insights by offering options tailored to glass, metal, and polymer applications and by supporting opaque, semi-transparent, and transparent configurations that match end-user priorities.
Fourth, work closely with regulators, certification bodies, and standards organizations to clarify performance metrics, fire and safety criteria, and interconnection requirements. Proactive engagement can expedite approvals and reduce project delays. Fifth, prioritize pilot projects that demonstrate lifecycle performance under real-world conditions and that quantify impacts on occupant experience, energy management, and maintenance costs. Sixth, develop financing and business models that address split-incentive challenges, including lease, power purchase agreement, and performance contracting approaches that make facade integration accessible to a broader set of owners. Finally, embed robust data analytics and remote monitoring capabilities into offerings to support predictive maintenance, warranty enforcement, and long-term performance verification.
The research underpinning this executive summary integrates primary qualitative interviews with domain experts, technical validation of component architectures, and systematic review of regulatory and policy developments across key regions. Primary engagement included structured consultations with architects, facade engineers, manufacturers, and facility managers to understand practical constraints on design integration, installation sequencing, and long-term operations. These conversations informed a taxonomy of technology and material choices that aligns with real-world specification practices.
Secondary analysis encompassed technical literature on photovoltaic materials, glazing systems, and balance-of-system components, as well as a review of building code updates and incentive program design. Data triangulation was applied to reconcile differences between stated preferences of procurement professionals and observed behavior in pilot installations, producing a balanced view of adoption barriers and enablers. Scenario analysis was used to explore how variations in policy, tariffs, and local construction norms could alter procurement timelines and supplier strategies, while sensitivity checks confirmed the robustness of qualitative conclusions across plausible outcomes.
Throughout, methodological safeguards included cross-validation of claims with multiple independent sources, transparent documentation of assumptions, and an emphasis on reproducible analytical steps. Limitations of the approach are acknowledged, including the evolving nature of tariffs and policy responses, which require ongoing monitoring to maintain the currency of strategic recommendations.
In summary, building-integrated photovoltaic facades represent a convergence of aesthetic, technical, and energy performance objectives that are redefining how the built environment contributes to decarbonization goals. Technology diversification across crystalline and thin-film options, coupled with advances in materials and mounting systems, is expanding viable design choices for architects and developers. Concurrently, policy shifts and trade developments are reshaping supply chain and procurement strategies, prompting greater attention to supplier resilience and localized manufacturing capabilities.
Segmentation-driven analysis clarifies that winners in this space will be those who align product offerings with end-user requirements-whether that means transparent glazing for high-amenity commercial spaces, rugged modules for industrial buildings, or lightweight polymer panels for retrofit scenarios. Regional differences underscore the need for market-specific go-to-market approaches that account for regulatory heterogeneity, grid characteristics, and construction practice. Competitive dynamics favor vertically integrated solutions and partnerships that reduce interface risk and accelerate time-to-market.
Ultimately, realizing the full potential of facade-integrated photovoltaics requires coordinated action across design firms, manufacturers, regulators, and financiers. By adopting flexible sourcing strategies, investing in integrated product platforms, and demonstrating real-world performance through pilot projects, stakeholders can reduce adoption friction and unlock the multifaceted value that BIPV facades offer to buildings, occupants, and broader energy systems.