![]() |
市場調查報告書
商品編碼
1829431
幹細胞庫市場按組織來源、細胞類型、服務類型、應用程式、所有權模式和最終用戶分類—2025-2032 年全球預測Stem Cell Banking Market by Tissue Source, Cell Type, Service Type, Application, Ownership Model, End User - Global Forecast 2025-2032 |
※ 本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。
預計到 2032 年,幹細胞銀行市場規模將成長至 628.9 億美元,複合年成長率為 17.78%。
主要市場統計數據 | |
---|---|
基準年2024年 | 169.8億美元 |
預計2025年 | 200.3億美元 |
預測年份:2032年 | 628.9億美元 |
複合年成長率(%) | 17.78% |
幹細胞庫位於再生醫學、精準診斷和生物醫學研究基礎設施的交匯處,形成了一個融合臨床嚴謹性和物流複雜性的服務類別。隨著治療方法的加速發展以及基於細胞的干涉措施從早期臨床試驗邁向更廣泛的臨床應用,支持細胞收集、處理、儲存、分配和下游應用的基礎設施已成為衛生系統、製藥公司和研究機構的戰略資產。本簡介探討了影響醫療保健提供者、投資者和最終用戶決策的製度、技術和監管力量。
該領域需要跨臨床接觸點、供應鏈合作夥伴和實驗室平台的協調。採集途徑因組織來源和病患狀況而異,而處理和儲存選項會產生長期營運承諾,進而影響成本、品質和可近性。同時,法律規範和品管系統會隨著臨床用例和安全期望而不斷發展,從而推動對標準化通訊協定和可追溯性的需求。了解這些相互依存關係對於高階主管設計服務組合、建立夥伴關係和評估能力投資至關重要。
本摘要概述了生態系統的核心組成部分,並闡明了每個功能層如何促進整體價值創造。透過概述關鍵營運領域及其影響因素,本介紹將幫助讀者評估後續章節中變革的促進因素、細分動態和策略選擇。
幹細胞庫的前景受到細胞工程、自動化和綜合護理模式的進步所推動,對服務供應商和相關人員提出了新的要求。自動化處理平台和改進的冷凍保存系統等技術進步正在提高一致性和通量,同時減少人工錯誤。同時,細胞療法和再生醫學的進步正在擴大臨床相關的組織和細胞類型,迫使幹細胞庫擴展其技術能力和保存方法。
這些轉變與不斷發展的商業模式一致。混合所有製結構、與醫院的策略聯盟以及與製藥和生物技術公司的合作正在重新定義細胞庫在轉化流程中的角色。買家越來越期待儲存以外的附加價值服務,例如臨床級細胞的客製化處理、以數據為中心的可追溯性以及與臨床試驗物流的協調。監管和認證格局也朝著主要司法管轄區的協調發展,提高了對文件、監管鍊和檢驗流程的基本要求。因此,投資穩健品質框架和可互操作系統的組織將贏得其臨床和商業合作夥伴的信任。
最後,病人偏好和照護路徑將影響收款服務的配置方式。雖然門診收款仍然是重要的管道,但在法規和基礎設施允許的情況下,上門收款模式和以患者為中心的物流正日益受到青睞。總而言之,這些變革力量正在改變銀行的競爭和營運格局,銀行必須在規模、靈活性和臨床整合之間取得平衡,才能抓住新的機會。
改變關稅制度的政策決定將對支持幹細胞庫運作的試劑、儀器和耗材的供應鏈產生具體影響。美國將於2025年生效的累積關稅調整將給依賴進口設備(例如冷凍櫃、低溫儲存容器和自動化處理設備)的機構,以及從海外製造商採購專用試劑、培養基和一次性耗材的機構帶來成本壓力。這些變化可能會影響籌資策略,並加速供應商關係的在地化和多元化。
除了設備和耗材的直接成本外,關稅還可能促使物流模式和庫存政策發生變化。更高的進口關稅鼓勵企業增加庫存,提高庫存前瞻性,以對沖價格波動,從而增加營運成本需求和倉儲空間。另一方面,一些供應商正在尋求與國內製造商或擁有本地生產能力的第三方供應商建立策略夥伴關係,以降低自身風險。同時,終端用戶的收費系統可能需要重新調整,以維持服務利潤率,同時平衡競爭動態和付款人的預期。
監管和合約安排也受到影響。跨境臨床研究計劃和治療供應鏈必須重新評估成本分攤條款、報銷假設和合約義務。對於跨國服務供應商,關稅使轉移定價和營運規劃變得複雜,可能導致司法管轄區合併或某些處理步驟的遷移。整體而言,關稅變化的累積影響凸顯了靈活採購、基於情境的財務規劃和供應商多元化對於維持營運連續性和成本競爭力的重要性。
細分透過將營運能力與生物、技術和商業性變數掛鉤,定義了可服務領域。不同的組織來源(例如脂肪組織、骨髓、臍帶組織、周邊血、臍帶血)具有獨特的採集通訊協定、處理工作流程和儲存需求,這會影響資本配置和員工能力。相應地,胚胎幹細胞、造血幹細胞、誘導性多功能幹細胞細胞和間質幹細胞等細胞類型各自涉及不同的調控途徑和下游應用模式,需要量身訂做的品質系統和處理標準。
按服務類型細分可以明確價值創造點和營運差異化最重要的方面。採集方法(例如診所內和家中採集)需要獨特的患者參與、物流和監管鏈考慮。配送選擇(無論是宅配或第三方物流)都會影響運輸檢驗和連續性。處理方法涵蓋從自動化處理平台到手動協議的各種方式,而選擇會影響可重複性和吞吐量。液相、機械冷藏和氣相儲存之間的儲存決策會影響長期可行性和設施設計,而解凍方法(無論是自動還是手動)都會影響臨床準備和程序風險。這些服務水準的差異決定了成本結構和銀行所追求的夥伴關係類型。
應用細分——化妝品、診斷、藥物研發、研究和治療——將產品與最終用戶需求和監管期望聯繫起來,從而決定銀行如何優先考慮功能並投資於檢驗。所有權模式——涵蓋混合型、私有型和公有型——決定了管治、資本取得和商業策略。最後,最終用戶細分——診斷實驗室、醫院、製藥和生物技術公司、研究機構和專科診所——決定了採購行為、採購量可預測性和決策時間表。整合這些細分市場,領導者可以確定投資優先級,使服務組合與客戶需求保持一致,並設計出既支持臨床嚴謹性又支持商業性擴充性的管治模式。
由於基礎設施、法規和臨床應用路徑在不同地區存在顯著差異,區域動態影響營運商、投資者和合作夥伴的策略選擇。在美洲,整合的醫療保健系統、集中的研究中心和活躍的臨床試驗項目,催生了對靠近卓越中心的高品質處理和儲存服務的需求。該地區的成本結構和報銷機制將影響哪些服務能夠擴展以及公共合作如何發展,從而迫使銀行採用能夠反映付款人結構和機構夥伴關係關係的差異化經營模式。
歐洲、中東和非洲地區管理體制和醫療資金籌措的差異性使得協調、認證和跨境物流變得尤為重要。在這個複雜地區運作的醫療保健提供者必須滿足多樣化的認證要求,並建立可互通的品質體系,以促進跨境臨床活動。投資合規文件和物流彈性對於支持跨國臨床試驗和解決區域基礎設施差異至關重要。
亞太地區的特點是生產能力快速擴張、臨床研究活動活性化以及國內醫療設備和試劑製造商數量不斷增加。這些條件為企業提供了擴大營運規模並將供應鏈遷移至更靠近高成長需求地區的機會。然而,複雜的監管環境和分散的市場環境要求企業制定細緻打入市場策略並建立強大的本地夥伴關係關係。該地區的成功企業需要在全球標準與在地化適應之間取得平衡,以滿足客戶期望和監管義務,同時保持營運效率。
幹細胞庫的競爭格局融合了傳統生物銀行機構、臨床醫院網路、專業服務供應商以及垂直整合的製藥公司,各家公司在信任度、技術力和服務廣度方面競爭。市場領導透過投資自動化和品質保證來降低差異性並提高可追溯性,從而實現差異化競爭;而新興企業則往往在專業組織處理、快速的試驗物流週轉以及靈活的合約模式等細分領域展開競爭。與臨床試驗贊助者、醫院和學術中心建立策略聯盟,可以建立穩定的需求管道,並提升臨床級服務的可信度。
與設備和試劑供應商建立創新夥伴關係關係至關重要,這有助於儘早獲得改進的低溫保存技術、封閉式系統處理和數位化監管鏈解決方案。嚴格遵守不斷變化的監管要求並投資於員工培訓和認證的公司,將受益於更強大的機構關係和更少的商業性摩擦。同時,隨著各機構尋求擴大產能、協調通訊協定並在分銷和倉儲方面獲取經濟效益,我們看到整合正在增加。
服務組合差異巨大,一些供應商強調從採集到臨床級處理和配送的全面端到端服務,而另一些則專注於儲存或細分領域的處理服務。買家優先考慮營運可靠性、文件嚴謹性以及與臨床和研究工作流程整合的能力,因此青睞擁有成熟品管系統和可互通數位平台的供應商。最終,成功取決於卓越的技術與商業性敏捷性的結合。
產業領導者應在五個相互關聯的維度上協調其策略:產能投資、夥伴關係設計、監管準備、商業模式創新和營運韌性。首先,優先投資自動化處理、經驗證的低溫保存系統和可互通的數位平台,以減少差異性、提高通量並增強可追溯性。這些技術選擇支援臨床和研究級工作流程,並使服務對機構客戶和臨床試驗贊助者更具吸引力。其次,設計整合採集機構、物流供應商和臨床試驗申辦者的夥伴關係夥伴關係,以創造可預測的需求並共用營運風險。正式的合作協議和聯合質量框架可以減少摩擦並加快服務交付時間。
第三,我們積極與監管機構和認證機構合作,以塑造和預測合規預期。建立專門的監管和品管部門有助於將不斷變化的需求轉化為可操作的流程更新,從而降低破壞性違規的可能性。第四,我們創新商業模式,提供模組化服務包、臨床專案的按績效付費合約以及靈活的儲存條款,以適應不同的最終用戶採購週期。定價和合約結構可根據醫院、研究機構和商業贊助商等情況進行調整。
最後,透過供應商多元化、關鍵投入在地化(盡可能)以及基於情境的財務規劃來增強供應鏈的彈性,以應對成本波動。制定應急計劃,應對物流中斷或關稅導致的成本變化。這些措施將幫助領導者將卓越營運轉化為可擴展的商業性優勢,同時保持臨床和研究的可靠性。
本執行摘要所依據的研究採用混合方法,將主要質性檢驗與二次文獻分析和結構化驗證結合。主要輸入包括對臨床負責人、實驗室經理、供應鏈高管和監管專家的訪談,他們就商業實踐、採購行為和臨床整合挑戰提供了第一手的觀點。這些訪談旨在捕捉服務供應商、最終用戶和設備供應商的戰術性實踐和戰略意圖。
二次分析利用已發布的監管指南、同行評審文獻、行業白皮書和產品規格來檢驗技術聲明,並將訪談結果與背景聯繫起來。數據整合著重於識別市場區隔、區域動態和競爭行為方面反覆出現的主題、趨同的證據以及不同的實踐。跨多個資訊來源的三角測量可以減少偏見,並增強結論的可信度。
調查方法有限。獲取獨家商業合約和內部財務資訊的管道有限,快速變化的法規環境可能超出書面指南的預期。為了彌補這些局限性,研究結果著重於營運趨勢、定性洞察和決策導向的影響,而非精確的財務指標。所有主要研究均遵循倫理標準進行,包括獲得訪談參與者的知情同意並保護其隱私。
幹細胞庫正在從一項儲存服務發展成為臨床、研究和商業用途的策略基礎設施層。卓越的營運、嚴格的監管和技術應用將決定哪些供應商能夠擴大規模,哪些供應商仍是利基專家。最具韌性的組織將是那些將自動化與強大的品質體系相結合、開發靈活的商業模式以滿足多樣化的最終用戶需求、並建立戰略夥伴關係關係以確保可預測的需求和技術協作的組織。
區域動態和政策變化(例如關稅變化和監管協調度的提高)增加了複雜性,但也為本地製造、物流專業化和差異化服務模式創造了機會。制定一個細分市場感知策略,將組織來源和細胞類型能力與服務交付模式和最終用戶需求相匹配,將指導投資重點。積極應對供應鏈風險並與監管機構合作的公司將最大限度地減少中斷,並成為臨床試驗和治療供應鏈中值得信賴的合作夥伴。
簡而言之,下一階段幹細胞庫的成功將取決於科學技術能力、嚴謹的業務管理以及精明的夥伴關係關係。隨著再生醫學應用的不斷擴展,能夠將這些需求轉化為明智投資和協作商業性經營模式的營運商將有望獲得策略利益。
The Stem Cell Banking Market is projected to grow by USD 62.89 billion at a CAGR of 17.78% by 2032.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 16.98 billion |
Estimated Year [2025] | USD 20.03 billion |
Forecast Year [2032] | USD 62.89 billion |
CAGR (%) | 17.78% |
Stem cell banking sits at the intersection of regenerative medicine, precision diagnostics, and biomedical research infrastructure, creating a service category that blends clinical rigor with logistical sophistication. As therapeutic development accelerates and cell-based interventions move from early-stage trials toward broader clinical adoption, the infrastructure that supports cell collection, processing, storage, distribution, and downstream application has become a strategic asset for health systems, pharma, and research institutions. This introduction frames the institutional, technological, and regulatory forces that shape decisions for providers, investors, and end users.
The field demands coordination across clinical touchpoints, supply-chain partners, and laboratory platforms. Collection pathways vary by tissue source and patient setting, while processing and storage options create long-term operational commitments that impact cost, quality, and access. Meanwhile, regulatory oversight and quality management systems evolve in response to clinical use cases and safety expectations, driving the need for standardized protocols and traceability. Understanding these interdependencies is essential for executives designing service portfolios, forming partnerships, or evaluating capacity investments.
This summary establishes the core components of the ecosystem and clarifies how each functional layer contributes to overall value creation. By outlining the primary operational domains and the forces that influence them, this introduction prepares readers to assess change drivers, segmentation dynamics, and strategic choices in subsequent sections.
The landscape of stem cell banking is undergoing transformative shifts driven by advances in cell engineering, automation, and integrated care models, creating new imperatives for service providers and stakeholders. Technological advances such as automated processing platforms and improved cryopreservation systems are increasing consistency and throughput while reducing manual error, thereby enabling more scalable operations and better compliance with stringent quality frameworks. Concurrently, progress in cell therapies and regenerative medicine is expanding the range of clinically relevant tissues and cell types, prompting banks to broaden their technical capabilities and storage modalities.
These shifts are matched by evolving commercial models. Hybrid ownership structures, strategic hospital partnerships, and collaborations with pharmaceutical and biotechnology companies are redefining the roles that custodial institutions play in translational pipelines. Buyers increasingly expect value-added services beyond storage, including bespoke processing for clinical-grade cells, data-centric traceability, and coordination with trial logistics. Regulatory and accreditation landscapes are also moving toward harmonization in key jurisdictions, which raises baseline expectations for documentation, chain-of-custody, and validation processes. As a result, organizations that invest in robust quality frameworks and interoperable systems gain credibility with clinical and commercial partners.
Finally, patient preferences and care pathways influence how collection services are configured. Clinic-based collection remains an important channel, but home collection models and patient-centric logistics are gaining traction where regulations and infrastructure permit. Taken together, these transformative forces are shifting the competitive and operational calculus for banks that must now balance scale, flexibility, and clinical integration to capture new opportunity.
Policy decisions that alter tariff regimes have tangible downstream effects on supply chains for reagents, instruments, and consumables that underpin stem cell banking operations. Cumulative tariff adjustments in the United States during 2025 amplify cost pressures for organizations that rely on imported equipment such as controlled-rate freezers, cryogenic storage vessels, and automated processing machines, and for those that source specialized reagents, media, and single-use disposables from offshore manufacturers. These changes influence procurement strategies and may accelerate localization or diversification of supplier relationships.
Beyond direct equipment and consumables costs, tariffs can prompt shifts in logistics patterns and inventory policies. Higher import duties encourage larger, forward-looking inventories to hedge against price volatility, which increases working capital needs and storage footprint. Conversely, some providers pursue strategic partnerships with domestic manufacturers or third-party suppliers with local production capability to reduce exposure. In parallel, fee schedules for end users may need recalibration to maintain service margins while balancing competitive dynamics and payer expectations.
Regulatory and contractual arrangements are affected as well. Clinical research projects and therapeutic supply chains that cross borders must reassess cost allocation clauses, reimbursement assumptions, and contractual liabilities. For multinational service providers, tariffs complicate transfer pricing and operational planning, potentially leading to jurisdictional consolidation or the relocation of certain processing steps. Overall, the cumulative impact of tariff shifts underscores the importance of flexible procurement, scenario-based financial planning, and supplier diversification to preserve operational continuity and cost competitiveness.
Segmentation illuminates the serviceable landscape by anchoring operational capabilities to biological, technical, and commercial variables. Tissue source categories such as adipose tissue, bone marrow, cord tissue, peripheral blood, and umbilical cord blood each impose unique collection protocols, processing workflows, and storage requirements, which influence capital allocation and staff competencies. Correspondingly, cell type distinctions among embryonic stem cells, hematopoietic stem cells, induced pluripotent stem cells, and mesenchymal stem cells map to different regulatory pathways and downstream application patterns, necessitating tailored quality systems and handling standards.
Service type segmentation clarifies where value is created and where operational differentiation matters most. Collection modalities span clinic collection and home collection, each with unique patient engagement, logistics, and chain-of-custody considerations. Distribution choices, whether courier service or third-party logistics, impact transit validation and continuity. Processing approaches range from automated processing platforms to manual protocols, and the selection affects reproducibility and throughput. Storage modality decisions between liquid-phase, mechanical refrigeration, and vapor-phase storage influence long-term viability and facility design, while thawing methods, whether automated or manual, affect clinical readiness and procedural risk. These service-level distinctions drive both cost structures and the types of partnerships that banks pursue.
Application segmentation-cosmetic, diagnostics, drug discovery, research, and therapeutic-connects product offerings to end-user requirements and regulatory expectations, shaping how banks prioritize capabilities and invest in validation. Ownership models, spanning hybrid, private, and public arrangements, dictate governance, capital access, and commercial strategy. Finally, end-user segmentation by diagnostic laboratories, hospitals, pharmaceutical and biotechnology companies, research institutes, and specialty clinics determines procurement behavior, volume predictability, and decision timelines. By integrating these segmentation lenses, leaders can prioritize investments, align service portfolios to customer needs, and design governance models that support both clinical rigor and commercial scalability.
Regional dynamics shape strategic choices for operators, investors, and partners as the infrastructure, regulation, and clinical adoption pathways vary significantly across geographies. In the Americas, integrated healthcare systems, concentrated research hubs, and active clinical trial pipelines create demand for high-quality processing and storage services close to centers of excellence. Cost structures and reimbursement mechanisms in this region influence which services reach scale and how private-public collaborations evolve, prompting banks to adopt differentiated business models that reflect payer mixes and institutional partnerships.
In Europe, Middle East & Africa, heterogeneity in regulatory regimes and healthcare financing drives a focus on harmonization, accreditation, and cross-border logistics. Providers operating in this combined region must navigate varying certification requirements and establish interoperable quality systems that facilitate cross-jurisdictional clinical activities. Investment in compliant documentation and logistical resilience is critical to serving multinational trials and addressing disparities in regional infrastructure.
The Asia-Pacific region is characterized by rapid capacity expansion, rising clinical research activity, and a growing base of domestic medical device and reagent manufacturers. These conditions present opportunities to scale operations and to reposition supply chains closer to high-growth demand pockets. However, regulatory complexity and market fragmentation require nuanced market-entry strategies and strong local partnerships. Across all regions, successful players balance global standards with local adaptation to meet client expectations and regulatory obligations while preserving operational efficiency.
The competitive landscape in stem cell banking is shaped by a mix of legacy biobanking institutions, clinical hospital networks, specialized service providers, and vertically integrated pharmaceutical partners, each competing on trust, technical competence, and service breadth. Market leaders differentiate through investments in automation and quality assurance that reduce variability and improve traceability, while emergent players often compete on niche capabilities such as specialized tissue processing, rapid turnaround for trial logistics, or flexible contracting models. Strategic alliances with trial sponsors, hospitals, and academic centers create stable demand pipelines and enhance credibility for clinical-grade services.
Innovation partnerships with instrumentation and reagent suppliers are critical, as they enable early access to improved cryopreservation technologies, closed-system processing, and digital chain-of-custody solutions. Companies that demonstrate rigorous compliance with evolving regulatory expectations and that invest in staff training and accreditation benefit from stronger institutional relationships and lower commercial friction. At the same time, consolidation activity is evident as organizations seek to scale capacity, harmonize protocols, and capture economies in distribution and storage.
Service portfolios vary significantly, with some providers emphasizing comprehensive end-to-end offerings from collection through clinical-grade processing and distribution, while others specialize in storage or niche processing services. Buyers prioritize operational reliability, documentation rigor, and the ability to integrate with clinical and research workflows, which privileges vendors with proven quality management systems and interoperable digital platforms. Ultimately, success rests on combining technical excellence with commercial agility.
Industry leaders should align strategy across five interrelated dimensions: capability investment, partnership design, regulatory preparedness, commercial model innovation, and operational resilience. First, prioritize investments in automated processing, validated cryopreservation systems, and interoperable digital platforms to reduce variability, improve throughput, and strengthen traceability. These technology choices support clinical and research-grade workflows and make service offerings more attractive to institutional customers and trial sponsors. Second, design partnerships that integrate collection sites, logistics providers, and clinical trial sponsors to create predictable demand and to share operational risk. Formalized collaboration agreements and joint quality frameworks reduce friction and accelerate time-to-service.
Third, proactively engage with regulators and accreditation bodies to shape and anticipate compliance expectations. Building a dedicated regulatory and quality affairs function can translate evolving requirements into actionable process updates, reducing the likelihood of disruptive non-compliance. Fourth, innovate commercial models by offering modular service bundles, outcome-linked contracting for clinical programs, and flexible storage terms to align with diverse end-user procurement cycles. Tailored pricing and contract structures support adoption across hospitals, research institutes, and commercial sponsors.
Finally, fortify supply-chain resilience through supplier diversification, localization of critical inputs where feasible, and scenario-based financial planning to manage cost volatility. Establish contingency plans for logistics disruptions and tariff-induced cost shifts. Together, these measures help leaders convert operational excellence into scalable commercial advantage while maintaining clinical and research credibility.
The research underpinning this executive summary relies on a mixed-methods approach that combines primary qualitative interviews with secondary documentary analysis and structured validation. Primary inputs include interviews with clinical leaders, laboratory managers, supply-chain executives, and regulatory specialists who provide first-hand perspectives on operational practices, procurement behavior, and clinical integration challenges. These interviews are designed to capture both tactical practices and strategic intent across service providers, end users, and equipment suppliers.
Secondary analysis draws on publicly available regulatory guidance, peer-reviewed literature, industry white papers, and product specification documents to verify technical assertions and to contextualize interview findings. Data synthesis focuses on identifying recurring themes, convergent evidence, and divergent practices that inform segmentation, regional dynamics, and competitive behavior. Triangulation across multiple sources reduces bias and strengthens confidence in the conclusions.
Methodological limitations are acknowledged: access to proprietary commercial contracts and internal financials is limited, and rapidly changing regulatory environments can outpace written guidance. To mitigate these constraints, findings emphasize operational trends, qualitative insights, and decision-focused implications rather than precise financial metrics. Ethical standards guided all primary research, including informed consent and confidentiality protections for interview participants.
Stem cell banking is evolving from a custodial service into a strategic infrastructure layer for clinical, research, and commercial applications. Operational excellence, regulatory rigor, and technological adoption determine which providers will scale and which will remain niche specialists. The most resilient organizations will be those that integrate automation with robust quality systems, develop flexible commercial models aligned to diverse end-user needs, and build strategic partnerships that secure predictable demand and technical collaboration.
Regional dynamics and policy shifts, such as tariff changes and evolving regulatory harmonization, add complexity but also create opportunities for local manufacturing, logistics specialization, and differentiated service models. Segment-aware strategies that align tissue source and cell type capabilities to service delivery modalities and end-user requirements will guide investment priorities. Companies that proactively address supply-chain risks and engage with regulators will minimize disruption and position themselves as trusted partners for clinical trials and therapeutic supply chains.
In sum, success in the next phase of stem cell banking depends on combining scientific and technical competence with disciplined operational management and commercially savvy partnerships. Executives who translate these imperatives into targeted investments and collaborative business models will capture the strategic benefits as regenerative medicine applications continue to expand.