封面
市場調查報告書
商品編碼
1827141

風力發電機複合材料市場:纖維類型、樹脂類型、製造流程、渦輪機類型和葉片長度—2025-2032 年全球預測

Wind Turbine Composite Materials Market by Fiber Type, Resin Type, Manufacturing Process, Turbine Type, Blade Length - Global Forecast 2025-2032

出版日期: | 出版商: 360iResearch | 英文 194 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

預計到 2032 年,風力發電機複合材料市場將成長至 348.1 億美元,複合年成長率為 10.74%。

主要市場統計數據
基準年2024年 153.9億美元
預計2025年 170.3億美元
預測年份:2032年 348.1億美元
複合年成長率(%) 10.74%

策略介紹,概述影響現代風力發電機葉片複合材料選擇的關鍵技術、供應鏈和商業性促進因素

隨著設計師、製造商和營運商尋求更輕、更堅固、更耐用的葉片和結構部件解決方案,風力發電產業的複合材料應用正在經歷快速變革。纖維和樹脂化學的進步,加上製造技術的改進,創造了更複雜的性能組合,不僅能夠支援更長的葉片和更高容量的渦輪機,還能解決疲勞、抗衝擊和環境耐久性問題。同時,供應鏈碎片化、原料成本波動以及區域政策的變化,使得策略性材料選擇和製造彈性變得尤為重要。

在此背景下,相關人員需要明確碳纖維、玻璃纖維和混合纖維系統之間的權衡取捨;環氧樹脂、聚酯和乙烯基酯化學在長期性能中的作用;以及樹脂轉注成形纏繞成型、手工積層、樹脂傳遞模塑和真空灌注等製造過程對品質、週期時間和可擴展性的影響。本引言概述了後續的核心技術和商業性問題,並設定了對報告中使用的分析視角(基於材料科學、製造經濟學和供應鏈彈性)的期望。建立這一基礎使決策者能夠更好地將其研發重點、籌資策略和資本投資與現代渦輪機設計和生命週期管理的現實情況相結合。

材料選擇和製造流程的變革正在重新定義風力渦輪機葉片的設計、性能預期和供應鏈策略

風力發電機複合材料的格局正在被各種力量再形成,這些力量迫使製造商和計劃開發商重新思考長期以來對材料性能和生產規模的假設。葉片長度和渦輪機額定功率的快速成長,推動著材料工程朝著碳纖維整合和混合解決方案的方向發展,以平衡剛度和成本。同時,高性能樹脂(尤其是那些具有抗疲勞和黏附性能的樹脂)的採用,正在改變製造商處理黏合劑黏合、塗層和二次黏合操作的方式。

製造技術也在不斷變化。傳統的手工積層工作流程正被更具重複性、製程可控的方法所取代,例如高壓和低壓樹脂轉注成形以及日益複雜的真空灌注技術,包括真空袋成型和VARTM成型。這些轉變提高了可重複性並減少了空隙率,從而實現了對葉片壽命至關重要的性能提升。此外,海上固定底部和浮體式平台的新需求促使人們使用能夠承受更嚴酷的海洋環境和高循環載荷的材料。監管和政策促進因素,以及區域含量要求和貿易措施,正在進一步調整供應鏈和籌資策略,使地理多元化和供應商資格成為長期競爭力的核心。

分析2025年美國新關稅的累積影響及其對供應鏈、籌資策略及國內產能決策的影響

美國近期於2025年加徵的關稅,為風力發電機生產所用複合材料的採購計算帶來了新的變數。這些措施提高了某些進口纖維和樹脂的相對成本,促使目標商標產品製造商和一級供應商重新評估其供應商基礎,並在許多情況下加速了近岸外包和本地化策略。工業買家的直接反應是進行供應商風險評估,並重新評估多方採購安排,以降低關稅和物流中斷帶來的風險。

從中期來看,這些關稅正在推動對關鍵投入的國內製造能力以及可在地化的資本密集度較低的下游製程(例如樹脂轉注成形和真空灌注)的投資。關稅還凸顯了混合纖維結構和樹脂配方的戰略價值,這些材料允許在性能權衡可接受的情況下進行替代。從計劃規劃的角度來看,開發商和原始設備製造商擴大將關稅方案納入採購計劃和合約結構中,並使用更靈活的條款和更長的前置作業時間對沖。因此,該產業正在重組供應路線,強調與供應商夥伴關係,這些供應商不僅提供價格競爭力,還提供安全的物流、可追溯的來源和合作的風險分擔機制。

深入的細分綜合展示了纖維選擇、樹脂化學、製造流程、渦輪部署類型、葉片長度等如何影響設計和採購

仔細研究細分市場,可以發現材料和工藝選擇如何相互作用,從而在不同的葉片應用中創造出獨特的價值提案。在評估纖維選擇時,碳纖維對於高剛度、大跨度葉片而言極具吸引力,而玻璃纖維對於成本敏感的陸上項目仍然具有吸引力。樹脂化學性質也扮演重要角色。環氧樹脂系統通常具有優異的附著力和疲勞壽命,這對於更大、更高容量的渦輪機非常有利,而聚酯和乙烯基酯系統則繼續為某些陸上和改造應用提供低成本的替代方案。

製造流程的選擇進一步加劇了這些選擇的複雜性。雖然纏繞成型和手工積層仍然適用於某些幾何形狀的零件和小批量生產,但在高壓或低壓條件下進行的樹脂轉注成形以及真空灌注技術(例如真空袋成型和VARTM)可為大型零件提供更高的重複性和更低的空隙率。風機的部署環境也很重要。陸上應用通常傾向於與海上裝置不同的材料和工藝組合,而海上固定底部平台和浮體系統對結構和耐久性的要求也不同,這些要求決定了複合材料的成分和核心部件的放置策略。最後,葉片長度段(從小於30公尺的短葉片到大於90公尺的超長葉片)推動了鋪層結構、翼梁帽設計和雜合反應強度的選擇,因為剛度、質量和疲勞的權衡會隨著規模的擴大而放大。這些細分視角指導有針對性的研發、資格測試路徑和供應商選擇標準,以最佳化性能、可製造性和生命週期彈性。

美洲、歐洲、中東和非洲以及亞太地區的區域動態和供應鏈影響決定了材料選擇和製造策略

區域動態顯著影響葉片的供應和製造商在設計葉片時的技術選擇。在美洲,成熟的製造地,加上附近市場不斷成長的需求和政策獎勵,正在推動對本地樹脂加工和纖維轉化能力的投資。該地區毗鄰大型陸上項目和正在開發的海上計劃,因此強調快速的前置作業時間、可追溯性和垂直整合的供應計劃,從而減少受海運和關稅波動影響的風險。

在歐洲、中東和非洲,雄心勃勃的海上目標加上不斷改進的環境法規,使得研發工作集中在雜合反應和先進的環氧系統,刺激了增強疲勞和耐腐蝕性能的材料創新。該地區成熟的認證框架和基於叢集的製造生態系統促進了合作試點項目和規模化生產。亞太地區仍然是主要的纖維和樹脂生產和加工中心,專注於具有成本效益的玻璃纖維和快速擴大的碳纖維轉化和自動化製造能力。該地區密集的供應商網路使其能夠進行大批量生產,但需要仔細的供應商資格認證和品管,以滿足最新渦輪機專案所需的性能標準。人事費用、認證時間表、港口基礎設施和法規環境的地區差異決定了在地採購和全球籌資策略之間的最佳平衡。

競爭格局和策略供應商行為優先考慮材料創新、製程控制、地理分佈和永續性

產業主要參與者正在根據差異化能力客製化其產品組合,包括先進的纖維轉化技術、專有樹脂化學製程和專業的製造技術。一些公司專注於碳纖維整合和混合解決方案,投資於鋪層結構專業知識和翼梁帽最佳化,以支援大型海上葉片專案。其他公司則專注於樹脂轉注成形和真空灌注技術的卓越工藝,並開發閉合迴路品管和自動化技術,以減少差異性並提高產量。材料配方商、零件製造商和渦輪機原始設備製造商之間的戰略夥伴關係正變得越來越普遍,這使得能夠共同開發滿足特定疲勞和衝擊標準的客製化樹脂系統和混合積層法層方案。

供應商的選擇越來越注重價格競爭力、端到端的可追溯性和技術支援。提供從材料特性分析、預測壽命建模到現場流程審核和舉措等全面服務的公司更有機會贏得長期合約。此外,投資於循環經濟計畫(例如可回收基質化學和已建立的廢棄葉片回收管道)的公司,正獲得優先考慮降低生命週期排放和除役風險的開發商和資助者的認可。這些趨勢正在重塑採購記分卡,將技術夥伴關係的可用性、永續性資格和本地製造足跡視為重要因素。

領導者可採取的策略重點是將材料合格、供應商彈性、流程現代化和循環性融入採購和研發規劃中

產業領導者應在材料科學、製造能力和籌資策略方面採取綜合方法,以確保其營運面向未來。首先,優先考慮認證項目,以加速混合纖維架構和高性能樹脂系統的可控採用,同時確保全面的疲勞和環境暴露測試,以反映陸上和海上的運作狀況。這將降低因性能或成本原因而替代材料的技術風險。其次,制定供應商細分框架,強調技術協作、區域製造地和對貿易中斷的抵禦能力,並納入靈活的合約條款和多個採購層級,以在關稅和物流波動期間保持連續性。

這些投資不僅應評估單位成本的降低,還應評估其品質改進、減少廢品和加快認證週期的效果。第四,將回收和報廢規劃納入採購決策,探索降低生命週期風險的樹脂化學和再整合途徑。最後,協調商業性、獎勵和長期營運獎勵之間的權衡,從而做出最佳化總體擁有成本和計劃級可靠性的決策。

採用強大的混合方法研究途徑,結合技術性能數據、供應商映射和相關人員訪談,以產生基於證據的策略見解

本執行摘要摘要所依據的研究綜合了技術文獻、行業標準認證通訊協定、專利申請、供應商揭露以及對材料科學家、製造工程師和採購主管的初步訪談。此外,本研究還將實驗室獲得的材料性能數據與工廠級製程能力觀測數據進行三角測量,以評估特定纖維-樹脂-製程組合在典型使用條件下的性能。在適用的情況下,本研究參考了關於疲勞行為、抗衝擊性和環境老化的同行評審研究,並將這些研究結果與已投入使用的葉片和維修的觀測結果進行交叉引用。

除了定性訪談外,調查方法還包括結構化供應商纏繞成型,以評估供應商的地理分佈、垂直整合水平以及在關鍵製程領域(例如纖維纏繞、手工積層、樹脂轉注成形和真空灌注)的能力。該研究優先考慮資料來源的可重複性和可追溯性,並採用情境測試來探索關稅和供應中斷如何影響採購決策。研究始終強調切實可行的洞察:將材料和工藝特性與對設計、製造、品質保證和商業合約的實際影響聯繫起來。這種方法確保建議基於實證證據,並反映不同部署環境中的營運實際情況。

綜合結論強調了材料創新、製造管理和供應鏈彈性相結合對未來風力發電機葉片競爭力的重要性。

總而言之,風力發電機複合材料市場正處於曲折點,材料創新、製造流程發展和地緣政治因素正在交匯,重新定義葉片的設計、製造和採購方式。決策者必須應對更複雜的交易環境,其中纖維選擇、樹脂化學和製程控制與計劃位置、葉片尺寸和監管環境動態地相互作用。透過圍繞耐久性、可製造性和供應彈性(而不僅僅是單位成本)重新建構採購和研發問題,相關人員可以解鎖性能改進,從而支援更大的渦輪機和更長的使用壽命。

未來,將技術夥伴關係、區域製造靈活性和生命週期思維納入策略規劃的組織將獲得競爭優勢。最具影響力的行動將包括:合格認證先進材料、投資可重複性更高的工藝流程,以及製定能夠規避關稅和物流風險的供應商策略。採用這些優先事項的主管和技術領導者將更有能力實現績效目標、管理生命週期風險,並抓住風力發電部署持續擴張和多樣化帶來的機會。

目錄

第1章:前言

第2章調查方法

第3章執行摘要

第4章 市場概況

第5章 市場洞察

  • 可回收熱塑性複合材料的整合實現了圓形葉片的經濟性
  • 採用先進的自動化纖維鋪放技術來最佳化葉片的精度和產量。
  • 生物基低排放樹脂體系的出現,協助更環保的風力發電機葉片製造
  • 利用碳纖維混合層壓板可提高剛度,同時減輕整體重量
  • 加入石墨烯等奈米材料以提高複合材料葉片的抗疲勞性
  • 開發用於複合材料結構即時健康監測的預測數位雙胞胎平台
  • 對超大葉片的需求推動了新的、更易於製造和耐用的複合材料配方的發展
  • 客製化複合材料以抵禦惡劣的海洋環境和腐蝕性鹽霧

第6章:2025年美國關稅的累積影響

第7章:人工智慧的累積影響,2025年

第8章風力發電機複合材料市場(依纖維類型)

  • 碳纖維
  • 玻璃纖維
  • 混合纖維

第9章風力發電機複合材料市場(依樹脂類型)

  • 環氧樹脂
  • 聚酯纖維
  • 乙烯基酯

第10章風力發電機複合材料市場(依製造流程)

  • 纏繞成型
  • 手工積層
  • 樹脂轉注成形
    • 高壓 Rtm
    • 低壓 Rtm
  • 真空注塑
    • 真空袋成型
    • 瓦爾托姆

第 11 章風力發電機複合材料市場(按渦輪機類型)

  • 海上
    • 固定底部
    • 浮動的
  • 陸上

第 12 章風力發電機複合材料市場(依葉片長度)

  • 30至60米
  • 60至90米
  • 超過90米
  • 最遠30米

第13章風力發電機複合材料市場(按地區)

  • 美洲
    • 北美洲
    • 拉丁美洲
  • 歐洲、中東和非洲
    • 歐洲
    • 中東
    • 非洲
  • 亞太地區

第14章風力發電機複合材料市場:依類別

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

第15章風力發電機複合材料市場(依國家)

  • 美國
  • 加拿大
  • 墨西哥
  • 巴西
  • 英國
  • 德國
  • 法國
  • 俄羅斯
  • 義大利
  • 西班牙
  • 中國
  • 印度
  • 日本
  • 澳洲
  • 韓國

第16章競爭格局

  • 2024年市佔率分析
  • 2024年FPNV定位矩陣
  • 競爭分析
    • Owens Corning
    • Hexcel Corporation
    • Gurit Holding AG
    • SGL Carbon SE
    • Toray Industries, Inc.
    • Teijin Limited
    • Mitsubishi Chemical Corporation
    • Jushi Group Co., Ltd.
    • 3B the Fiberglass Company SpA
    • China Composites Group Co., Ltd.
Product Code: MRR-DD0700E81ED4

The Wind Turbine Composite Materials Market is projected to grow by USD 34.81 billion at a CAGR of 10.74% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 15.39 billion
Estimated Year [2025] USD 17.03 billion
Forecast Year [2032] USD 34.81 billion
CAGR (%) 10.74%

A strategic introduction that frames the critical technical, supply chain, and commercial drivers shaping composite material choices for modern wind turbine blades

The wind energy sector is undergoing a rapid evolution in its use of composite materials as designers, manufacturers, and operators seek lighter, stronger, and more durable solutions for blades and structural components. Advances in fiber and resin chemistry, paired with refinements in manufacturing techniques, have created a more sophisticated performance palette that supports longer blades and higher capacity turbines while addressing fatigue, impact resistance, and environmental durability. At the same time, supply chain fragmentation, raw material cost volatility, and regional policy shifts have placed a premium on strategic material selection and manufacturing flexibility.

Against this backdrop, stakeholders require clarity on the trade-offs between carbon, glass, and hybrid fiber systems; the role of epoxy, polyester, and vinyl ester chemistries in long-term performance; and the implications of production routes such as filament winding, hand layup, resin transfer molding, and vacuum infusion on quality, cycle time, and scalability. This introduction frames the core technical and commercial questions that follow and sets expectations for the analytical lens used throughout the report: one grounded in material science, manufacturing economics, and supply chain resilience. By establishing these foundations, decision-makers can better align R&D priorities, sourcing strategies, and capital investments to the realities of contemporary turbine design and lifecycle management.

Transformative shifts in materials selection and production processes that are redefining blade design, performance expectations, and supply chain strategies in wind energy

The landscape for wind turbine composite materials is being reshaped by converging forces that compel manufacturers and project developers to reconsider long-standing assumptions about material performance and production scale. Rapid growth in blade lengths and turbine ratings has pushed materials engineering toward carbon fiber integration and hybrid solutions that balance stiffness and cost. Simultaneously, the adoption of higher-performance resins, particularly formulations engineered for fatigue resistance and adhesion, is altering how manufacturers approach adhesive joints, coatings, and secondary bonding operations.

Manufacturing technology is also in transition. Traditional hand layup workflows are being augmented by more repeatable, process-controlled approaches such as high pressure and low pressure resin transfer molding and increasingly refined vacuum infusion techniques, including vacuum bag molding and VARTM variants. These shifts improve repeatability and reduce void content, yielding performance gains critical for longer blades. Moreover, emerging demands from offshore fixed bottom and floating platforms incentivize materials that tolerate harsher marine exposure and higher cyclic loads. Regulatory and policy drivers, along with localized content requirements and trade measures, are further redirecting supply chains and sourcing strategies, making geographic diversification and supplier qualification more central to long-term competitiveness.

Cumulative impact analysis of new United States tariff measures in 2025 and their influence on supply chains, sourcing strategies, and domestic capacity decisions

Recent tariff measures implemented by the United States in 2025 have introduced a new variable into procurement and sourcing calculus for composite materials used in wind turbine production. These measures have increased the relative cost of certain imported fibers and resins, prompting original equipment manufacturers and tier-one suppliers to reassess their supplier bases and, in many cases, accelerate nearshoring or regionalization strategies. The immediate response among industrial buyers has been to perform supplier risk assessments and to re-evaluate multi-sourcing contracts to mitigate exposure to duties and logistical disruption.

Over a medium-term horizon, these tariff dynamics are encouraging investment in domestic manufacturing capacity for critical inputs and in downstream processes such as resin transfer molding and vacuum infusion that can be localized with lower capital intensity. The tariffs also highlight the strategic value of hybrid fiber architectures and resin formulations that permit substitution where performance trade-offs are acceptable. From a project planning perspective, developers and OEMs are increasingly folding tariff scenarios into procurement schedules and contract structures, using more flexible clauses and longer lead-time hedges. As a result, the industry is seeing a reconfiguration of supply routes, with a greater emphasis on supplier partnerships that deliver not just price competitiveness but also secure logistics, traceable provenance, and collaborative risk-sharing mechanisms.

Insightful segmentation synthesis connecting fiber choices, resin chemistries, manufacturing processes, turbine deployment types, and blade length implications for design and sourcing

A granular view of segmentation reveals how material and process choices interact to create distinct value propositions across blade applications. When evaluating fiber selection, carbon fiber presents a compelling profile for high-stiffness, long-span blades, while glass fiber remains attractive for cost-sensitive onshore programs; hybrid fiber systems are increasingly used to balance targeted stiffness, fatigue performance, and cost. Resin chemistry plays an equally important role: epoxy systems often deliver superior adhesion and fatigue life beneficial for larger, higher-capacity turbines, whereas polyester and vinyl ester chemistries continue to provide lower-cost alternatives for specific onshore and retrofit applications.

Manufacturing process selection compounds these choices. Filament winding and hand layup remain relevant for particular component geometries and low-volume builds, while resin transfer molding-executed under either high pressure or low pressure conditions-and vacuum infusion techniques such as vacuum bag molding and VARTM enable higher reproducibility and lower void content for larger parts. Turbine deployment context matters as well: onshore applications typically favor different material-process combinations than offshore installations, and within offshore, fixed-bottom platforms and floating systems impose distinct structural and durability demands that inform composition and core placement strategies. Finally, blade length categories-from shorter blades below 30 meters to the very long blades above 90 meters-drive choices in ply architecture, spar cap design, and hybridization intensity, because scale amplifies stiffness, mass, and fatigue trade-offs. Together, these segmentation lenses guide targeted R&D, qualification testing pathways, and supplier selection criteria that optimize for performance, manufacturability, and lifecycle resilience.

Regional dynamics and supply chain implications across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape material choices and manufacturing strategies

Regional dynamics significantly influence both supply availability and the technical choices that manufacturers make when designing blades. In the Americas, established manufacturing hubs, coupled with growing near-market demand and policy incentives, are driving investment in localized resin processing and fiber conversion capabilities. This region's proximity to large onshore and evolving offshore projects increases the premium on rapid lead times, traceability, and vertically integrated supply models that reduce exposure to shipping and tariff fluctuations.

In Europe, Middle East & Africa, the combination of ambitious offshore targets and progressive environmental regulations is stimulating innovation in materials that deliver enhanced fatigue and corrosion resistance, with concentrated R&D efforts in hybridization and advanced epoxy systems. This region's mature certification frameworks and cluster-based manufacturing ecosystems facilitate collaborative pilot programs and scale-up. The Asia-Pacific region remains a major production and processing center for fibers and resins, with an emphasis on cost-effective glass fiber and rapidly expanding capabilities in carbon fiber conversion and automated manufacturing. The region's dense supplier networks enable high-volume production but also require careful supplier qualification and quality control to meet the performance standards demanded by modern turbine programs. Across regions, differences in labor cost, certification timelines, port infrastructure, and regulatory environments shape the optimal balance between local sourcing and global procurement strategies.

Competitive company landscape and strategic supplier behaviors that prioritize material innovation, process control, regional footprint, and sustainability credentials

Key industry participants are aligning their portfolios toward differentiated capabilities that encompass advanced fiber conversion, proprietary resin chemistries, and specialized manufacturing know-how. Some firms concentrate on carbon fiber integration and hybrid solutions, investing in ply architecture expertise and spar cap optimization to serve large-scale offshore blade programs. Others focus on process excellence in resin transfer molding and vacuum infusion techniques, developing closed-loop quality controls and automation to reduce variability and increase throughput. Strategic partnerships between material formulators, component manufacturers, and turbine OEMs are becoming more common, enabling co-development of tailored resin systems and hybrid layup schedules that meet specific fatigue and impact criteria.

Supplier selection increasingly values end-to-end traceability and technical support alongside price competitiveness. Companies that offer integrated services-ranging from material characterization and predictive lifetime modeling to on-site process audits and training-are better positioned to win long-term contracts. Additionally, firms that invest in circularity initiatives, such as recyclable matrix chemistries and established take-back pathways for end-of-life blades, are gaining visibility among developers and financiers who prioritize lifecycle emissions and decommissioning risk mitigation. These trends are reshaping procurement scorecards to include technical partnership potential, sustainability credentials, and regional manufacturing footprint as key attributes.

Actionable strategic priorities for leaders to integrate material qualification, supplier resilience, process modernization, and circularity into procurement and R&D plans

Industry leaders should adopt an integrated approach that links material science, manufacturing capability, and procurement strategy to future-proof operations. First, prioritize qualification programs that accelerate the controlled adoption of hybrid fiber architectures and higher-performance resin systems, while ensuring comprehensive fatigue and environmental exposure testing that reflects both onshore and offshore operational profiles. This will reduce technical risk when substituting materials for performance or cost reasons. Second, develop a supplier segmentation framework that values technical collaboration, regional manufacturing presence, and resilience to trade disruption; embed flexible contract terms and multiple sourcing tiers to maintain continuity during tariff and logistics volatility.

Third, invest in process modernization by piloting higher-repeatability production approaches such as refined RTM variants and advanced vacuum infusion practices; these investments should be evaluated not just for unit cost reduction but for quality gains, scrap reduction, and faster qualification cycles. Fourth, incorporate circularity and end-of-life planning into sourcing decisions, exploring resin chemistries and reintegration pathways that reduce lifecycle risk. Finally, align commercial and engineering incentives so that procurement, R&D, and manufacturing jointly evaluate trade-offs between material cost, performance, and long-term operational expenses, thereby enabling decisions that optimize total cost of ownership and project-level reliability.

Robust mixed-methods research approach combining technical performance data, supplier mapping, and stakeholder interviews to generate evidence-based strategic insights

The research underpinning this executive summary synthesizes technical literature, industry-standard certification protocols, patent filings, supplier disclosures, and primary interviews with material scientists, manufacturing engineers, and procurement executives. It triangulates laboratory-derived material performance data with plant-level process capability observations to evaluate how specific fiber-resin-process combinations perform under representative service conditions. Where applicable, the analysis references peer-reviewed studies on fatigue behavior, impact resistance, and environmental aging, and it cross-references those findings with observed outcomes from fielded blades and retrofits.

In addition to qualitative interviews, the methodology includes a structured supplier mapping exercise to assess geographic footprints, vertical integration levels, and capabilities in key processes such as filament winding, hand layup, resin transfer molding, and vacuum infusion. The study prioritizes reproducibility and traceability in its data sources and employs scenario testing to explore how tariff and supply disruptions could influence sourcing decisions. Throughout, emphasis remains on actionable insight: linking material and process characteristics to practical implications for design, manufacturing, quality assurance, and commercial contracting. The approach ensures that recommendations are grounded in empirical evidence and reflect operational realities across diverse deployment environments.

Concluding synthesis emphasizing the combined importance of material innovation, manufacturing control, and supply chain resilience for future wind turbine blade competitiveness

In conclusion, the composite materials landscape for wind turbines is at an inflection point where material innovation, manufacturing evolution, and geopolitical factors converge to redefine how blades are designed, produced, and sourced. Decision-makers must navigate a more complex trade space in which fiber choice, resin chemistry, and process control interact dynamically with project location, blade scale, and regulatory context. By reframing procurement and R&D questions around durability, manufacturability, and supply resilience rather than unit price alone, stakeholders can unlock performance improvements that support larger turbines and longer service lives.

Looking forward, competitive advantage will accrue to organizations that integrate technical partnerships, regional manufacturing flexibility, and lifecycle thinking into their strategic plans. The most impactful actions combine targeted qualification of advanced materials, investments in higher-repeatability processes, and supplier strategies that hedge against tariff and logistical risks. Executives and technical leaders who adopt these priorities will be better positioned to deliver on performance targets, manage lifetime risk, and capture opportunities presented by the continued scaling and diversification of wind energy deployments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of recyclable thermoplastic composites to enable circular blade economy
  • 5.2. Adoption of advanced automated fiber placement techniques to optimize blade precision and throughput
  • 5.3. Emergence of bio-based and low-emission resin systems for greener wind turbine blade production
  • 5.4. Utilization of carbon fiber hybrid laminates to balance stiffness gains with overall weight reduction
  • 5.5. Incorporation of graphene and other nanomaterials to enhance fatigue resistance in composite blades
  • 5.6. Development of predictive digital twin platforms for real-time composite structural health monitoring
  • 5.7. Demand for ultra-large blades driving novel composite formulations for manufacturability and durability
  • 5.8. Customization of composite materials to withstand harsh offshore conditions and corrosive salt spray

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Wind Turbine Composite Materials Market, by Fiber Type

  • 8.1. Carbon Fiber
  • 8.2. Glass Fiber
  • 8.3. Hybrid Fiber

9. Wind Turbine Composite Materials Market, by Resin Type

  • 9.1. Epoxy
  • 9.2. Polyester
  • 9.3. Vinyl Ester

10. Wind Turbine Composite Materials Market, by Manufacturing Process

  • 10.1. Filament Winding
  • 10.2. Hand Layup
  • 10.3. Resin Transfer Molding
    • 10.3.1. High Pressure Rtm
    • 10.3.2. Low Pressure Rtm
  • 10.4. Vacuum Infusion
    • 10.4.1. Vacuum Bag Molding
    • 10.4.2. Vartm

11. Wind Turbine Composite Materials Market, by Turbine Type

  • 11.1. Offshore
    • 11.1.1. Fixed Bottom
    • 11.1.2. Floating
  • 11.2. Onshore

12. Wind Turbine Composite Materials Market, by Blade Length

  • 12.1. 30 To 60 Meters
  • 12.2. 60 To 90 Meters
  • 12.3. Above 90 Meters
  • 12.4. Up To 30 Meters

13. Wind Turbine Composite Materials Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Wind Turbine Composite Materials Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Wind Turbine Composite Materials Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Owens Corning
    • 16.3.2. Hexcel Corporation
    • 16.3.3. Gurit Holding AG
    • 16.3.4. SGL Carbon SE
    • 16.3.5. Toray Industries, Inc.
    • 16.3.6. Teijin Limited
    • 16.3.7. Mitsubishi Chemical Corporation
    • 16.3.8. Jushi Group Co., Ltd.
    • 16.3.9. 3B the Fiberglass Company S.p.A.
    • 16.3.10. China Composites Group Co., Ltd.

LIST OF FIGURES

  • FIGURE 1. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2024 VS 2032 (%)
  • FIGURE 3. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 4. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2024 VS 2032 (%)
  • FIGURE 5. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2024 VS 2032 (%)
  • FIGURE 7. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2024 VS 2032 (%)
  • FIGURE 9. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2024 VS 2032 (%)
  • FIGURE 11. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 12. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY REGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 13. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 14. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 15. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 16. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 17. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 18. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 19. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 20. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 21. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GROUP, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 22. ASEAN WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 23. GCC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 24. EUROPEAN UNION WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 25. BRICS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 26. G7 WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 27. NATO WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 28. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 29. WIND TURBINE COMPOSITE MATERIALS MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 30. WIND TURBINE COMPOSITE MATERIALS MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. WIND TURBINE COMPOSITE MATERIALS MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, 2025-2032 (USD MILLION)
  • TABLE 5. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 7. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 9. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 11. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 13. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 15. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 17. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 19. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 21. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 23. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 25. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 27. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 29. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 31. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 33. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 35. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 37. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 39. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 41. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 43. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 45. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 47. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 49. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 51. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 53. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 55. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 57. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 59. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 61. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 63. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 65. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 67. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 69. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 71. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 73. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 75. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 77. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 79. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 81. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 83. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 85. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 87. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 89. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 91. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 93. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 95. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 97. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 99. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 101. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 103. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 105. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 107. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 109. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 111. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 113. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 114. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 115. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 116. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 117. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 118. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 119. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 120. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 121. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 122. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 123. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 124. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 125. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 126. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 127. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 128. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 129. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 130. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 131. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 132. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 133. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 134. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 135. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 136. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 137. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 138. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 139. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 140. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 141. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 142. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 143. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 144. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 145. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 146. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 147. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 148. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 149. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 150. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 151. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 152. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 153. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 154. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 155. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 156. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 157. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 158. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 159. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 160. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 161. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 162. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 163. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 164. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 165. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 166. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 167. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 168. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 169. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 170. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 171. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 172. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 173. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 174. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 175. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 176. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 177. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 178. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 179. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 180. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 181. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 182. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 183. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 184. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 185. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 186. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 187. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 188. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 189. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 190. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 191. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 192. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 193. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 194. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 195. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 196. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 197. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 198. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 199. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 200. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 201. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 202. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 203. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 204. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 205. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 206. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 207. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 208. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 209. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 210. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 211. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 212. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 213. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 214. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 215. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 216. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 217. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 218. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 219. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 220. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 221. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 222. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 223. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 224. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 225. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 226. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 227. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 228. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 229. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 230. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 231. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 232. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 233. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 234. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 235. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 236. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 237. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 238. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 239. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 240. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 241. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 242. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 243. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 244. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 245. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 246. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 247. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 248. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 249. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 250. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 251. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 252. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 253. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 254. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 255. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 256. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 257. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 258. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 259. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 260. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 261. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 262. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 263. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 264. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 265. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 266. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 267. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 268. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 269. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 270. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 271. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 272. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 273. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 274. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 275. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 276. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 277. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 278. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 279. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 280. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 281. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 282. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 283. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 284. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 285. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 286. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 287. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 288. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 289. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 290. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 291. ASIA-PAC