![]() |
市場調查報告書
商品編碼
1772411
整合艦橋系統市場規模、佔有率、趨勢分析報告:按組件、子系統、平台、地區、細分市場預測,2025-2030 年Integrated Bridge Systems Market Size, Share & Trends Analysis Report By Component (Hardware, Software), By Subsystem (Navigation Systems, Communication Systems), By Platform (Commercial Vessels), By Region, And Segment Forecasts, 2025 - 2030 |
整合艦橋系統市場概覽
全球整合艦橋系統市場規模預計在2024年達到82.7億美元,預計2030年將達到100.7億美元,2025-2030年複合年成長率為3.5%。整合艦橋系統(IBS)市場受到嚴格的國際法規結構要求安全性、互通性和營運可靠性。
1996 年通過的國際海事組織 (IMO) 決議 MSC.64(67) 為綜合橋樑系統制定了基本性能標準,要求採用模組化、可互通的設計、集中控制和故障安全操作通訊協定。
此外,SOLAS公約第5章第19條規定了冗餘要求,以確保如果子系統發生故障,能夠立即發出警報,並且不影響其他關鍵功能。這些法規迫使海事業者採用符合不斷發展的全球安全基準的整合艦橋系統架構。例如,美國海岸警衛隊海岸防衛隊的守護者級艦船,包括「艾達·劉易斯號」,都採用了經過國際海事組織和美國船級社標準檢驗的整合式駕駛台系統解決方案,確保導航和機械控制子系統嚴格合規。這種監管格局正在標準化整合駕駛台系統的配置,並鼓勵模組化系統設計的創新,以跟上海事安全標準的不斷發展。
現代IBS平台擴大利用先進的導航技術來提高情境察覺和操縱精度。美國海岸警衛隊防衛隊已將差分全球定位系統 (DGPS) 和電子海圖顯示與資訊系統 (ECDIS) 納入其IBS框架,即使在惡劣天氣條件下也能實現10公尺以內的即時定位精度。這些系統透過整合和顯示雷達、聲納和自動識別系統 (AIS) 數據,減輕了導航員的工作量並提高了決策能力。美國海岸防衛隊「艾達·劉易斯號」體現了這種整合,它利用動態定位系統 (DPS) 處理來自ECDIS和環境感測器的輸入,從而在浮標維護作業期間自主保持船舶位置。這種技術協同作用有助於最大限度地減少人為錯誤並最佳化航線執行,尤其是在擁擠或危險水域。
自動化在現代綜合艦橋系統中至關重要,它能顯著減少對人工干預和大量人員的依賴。美國海岸警衛隊防衛隊的「守護者」級巡邏艇採用了整合艦橋系統,該系統配備了自動化機器控制和監控系統,集中管理引擎診斷、警報管理和日誌。這種自動化技術使一名操作員能夠同時管理推進、導航和安全系統,而這些系統先前需要多名人員共同完成。光纖網路和集中式工作站的引入進一步簡化了子系統之間的資料流,增強了搜救和溢油應急等關鍵行動中的即時決策能力。
強大的冗餘和故障安全通訊協定在整合艦橋系統的設計中至關重要,確保即使子系統發生故障也能繼續運作。 SOLAS 第5章要求進行故障隔離以防止連鎖故障,並設定聲光警報以快速提醒航海員。美國海岸防衛隊「艾達·劉易斯號」透過為雷達和電子海圖顯示器與資訊系統等關鍵子系統配備冗餘工作站和獨立電源,充分體現了這些原則。綜合駕駛台系統還包含「故障安全」模式,如果自動化系統故障,則預設為手動操作,從而在緊急情況下保持航行完整性。此類通訊協定在關鍵的海上環境中至關重要,因為系統停機可能會造成災難性的後果。
動態定位系統 (DPS) 已成為整合式艦橋系統 (IBS) 的重要組成部分,協助推動需要精確操控的船舶市場成長,尤其是在公海航行的船舶。美國海岸警衛隊)使用 DPS 將定位精度保持在 10 公尺半徑以內,即使在 30 節風速和 8 英尺高的海浪等惡劣條件下也能實現。透過整合差分 GPS、指南針和風感測器的輸入,DPS 可以自主調節推進器和推進力,以應對環境因素。對於浮標維護等海上作業而言,此功能至關重要,因為在這些作業中,手動定位不切實際或危險。將 DPS 整合到 IBS 中可以提高操作安全性,並擴大即使在惡劣條件下也能完成的海上作業範圍。
Integrated Bridge Systems Market Summary
The global integrated bridge systems market size was estimated at USD 8.27 billion in 2024 and is projected to reach USD 10.07 billion by 2030, growing at a CAGR of 3.5% from 2025 to 2030. The Integrated Bridge Systems (IBS) market is strongly driven by stringent international regulatory frameworks mandating safety, interoperability, and operational reliability.
The International Maritime Organization's (IMO) MSC.64(67) resolution, adopted in 1996, set foundational performance standards for integrated bridge systems, requiring modular, interoperable designs with centralized control and fail-safe operational protocols.
Additionally, SOLAS Chapter V, Regulation 19, enforces redundancy requirements to ensure that any subsystem failure triggers immediate alarms without compromising other critical functions. These regulations compel maritime operators to adopt integrated bridge systems architectures that meet evolving global safety benchmarks. For instance, the U.S. Coast Guard's Keeper-class vessels, including the USCGC Ida Lewis, integrate bridge systems solutions validated against IMO and American Bureau of Shipping standards, ensuring rigorous compliance across navigational and machinery control subsystems. This regulatory landscape standardizes integrated bridge systems configurations and fosters innovation in modular system design, accommodating continuous advancements in maritime safety norms.
Modern IBS platforms increasingly leverage advanced navigation technologies to enhance situational awareness and operational precision. The U.S. Coast Guard incorporates Differential Global Positioning System (DGPS) and Electronic Chart Display and Information System (ECDIS) within its IBS frameworks, achieving real-time positioning accuracy within 10 meters even under adverse weather conditions. These systems synthesize radar, sonar, and Automated Identification System (AIS) data into unified displays, reducing navigator workload and improving decision-making. The USCGC Ida Lewis exemplifies this integration by utilizing Dynamic Positioning Systems (DPS) that autonomously maintain vessel position during buoy-tending operations, processing inputs from ECDIS and environmental sensors. Such technological synergies minimize human error and optimize route execution, particularly in congested or hazardous maritime environments.
Automation is critical in modern integrated bridge systems, significantly reducing manual intervention and reliance on large crews. The U.S. Coast Guard's Keeper-class cutters employ integrated bridge systems with automated machinery control and monitoring systems, centralizing engine diagnostics, alarm management, and log-keeping. This automation enables a single operator to manage propulsion, navigation, and safety systems concurrently, which previously required multiple personnel. Deploying fiber-optic networks and centralized workstations further streamlines data flow across subsystems, enhancing real-time decision-making during critical operations such as search-and-rescue or oil spill response missions.
Robust redundancy and fail-safe protocols are vital to integrated bridge systems design, ensuring continuous operation despite subsystem failures. SOLAS Chapter V mandates isolation of faults to prevent cascading failures, coupled with audible and visual alarms to alert officers promptly. The USCGC Ida Lewis illustrates these principles through redundant workstations and independent power supplies for key subsystems like radar and ECDIS. Its integrated bridge systems also incorporate a "fail-to-safe" mode that defaults to manual override if automation is compromised, maintaining navigational integrity during emergencies. These protocols are crucial in high-stakes maritime environments where system downtime can result in catastrophic consequences.
Dynamic Positioning Systems (DPS) have become integral components of integrated bridge systems, which has propelled the market growth, especially for vessels requiring precise maneuvering in open waters. The U.S. Coast Guard employs DPS to maintain station-keeping within a 10-meter radius, even amid challenging conditions such as 30-knot winds and 8-foot waves. By integrating inputs from DGPS, gyrocompasses, and wind sensors, DPS autonomously adjusts thrusters and propulsion to counteract environmental forces. This capability is essential for offshore operations like buoy maintenance, where manual positioning is impractical or dangerous. Integrating DPS into IBS elevates operational safety and expands the range of maritime activities achievable in adverse conditions.
Global Integrated Bridge Systems Market Report Segmentation
This report forecasts revenue growth at the global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global integrated bridge systems market report based on component, subsystem, platform, and region: