![]() |
市場調查報告書
商品編碼
1771685
美國汽車動力系統感測器市場規模、佔有率、趨勢分析報告(按感測器類型、車輛類型、推進類型及細分市場預測,2025-2030 年)U.S. Automotive Powertrain Sensors Market Size, Share & Trends Analysis Report By Sensor Type (Pressure Sensors, Temperature Sensors, Position Sensors, Speed Sensors), By Vehicle Type (LCVs, HCVs), By Propulsion Type, And Segment Forecasts, 2025 - 2030 |
預計 2024 年美國汽車動力系統感測器市場規模將達到 40.601 億美元,預計 2025 年至 2030 年的複合年成長率為 7.6%。美國向電動車 (EV) 的快速轉變極大地推動了先進動力傳動系統感測器市場的成長。
根據美國能源部 (DOE) 2022 年年度電氣化進度報告,政府正在大力投資增強感測器技術,以提高鋰離子電池的效率和溫度控管。即時電壓和電流感測器現在可以為電池管理系統 (BMS) 提供精確數據,從而延長電池壽命並最佳化充電週期。電池組內建的溫度感測器有助於防止過熱,尤其是在極端氣候條件下,這使其成為提高電動車可靠性的關鍵因素。電動馬達內的扭力感測器可實現無縫、節能的電力傳輸。這些創新是美國能源部資助的一項計畫的一部分,該計畫的目標是到 2025 年將動力傳動系統能耗降低 15%,從而推動高性能電動車零件市場的發展。
旨在減少車輛排放氣體的聯邦法規正在推動對內燃機 (ICE) 車輛的高精度後處理感測器的需求。美國環保署 (EPA) 的 2023 年清潔卡車計畫要求到 2027 年將重型車輛的氮氧化物排放減少 90%,這將推動寬頻氧氣感測器和顆粒物 (PM) 感測器等技術的市場成長。這些感測器在維持空燃比和監測柴油引擎廢氣過濾器方面發揮關鍵作用,確保符合嚴格的排放基準值。此外,美國能源部的高效引擎技術計畫正在鼓勵開發用於混合動力引擎的耐硫氮氧化物感測器,在低溫排氣情況下尤其有用。這些監管壓力正在推動市場邁向可改善環境性能和車輛壽命的感測器解決方案邁進。
ADAS(高級駕駛輔助系統)和動力傳動系統控制的日益整合為感測器部署創造了新的機會,推動了該領域的市場成長。 ADAS 的雷達和雷射雷達輸入目前被用於預測性動力傳動系統操作,例如內燃機和混合動力汽車的前視換檔和再生煞車控制。美國聯邦公路管理局的 2023 年 V2X 採用指南強調了車輛到基礎設施 (V2I)通訊的重要性,使用曲軸和節氣門位置監視器等感測器根據即時交通數據調整節氣門和變速箱操作。 NREL 進行的現場試驗表明,這種整合可以將重型卡車的燃油經濟性提高 6-8%,從而推動基於感測器的能源最佳化系統市場的發展。
人們對汽車電子設備嵌入式能耗的日益擔憂,推動了市場對低功耗感測器解決方案的需求。美國能源部 (DOE) 的《2024 年永續交通戰略》和美國橡樹嶺國家實驗室 (ORNL) 的一項 2023 年研究顯示,感測器製造對電動車的整體能源足跡貢獻巨大,高達 12%。因此,感測器開發人員正在轉向基於碳化矽 (SiC) 的感測器等創新技術,與傳統矽元件相比,其功耗降低了 40%。同樣,牽引馬達中的霍爾效應感測器現在可以在更低的電壓下工作,而 CAN FD通訊協定可以最大限度地減少感測器喚醒週期,從而提高能源效率。這些趨勢與美國環保署 (EPA) 的 2025 年 CAFE 標準一致,該標準要求車輛整體燃油經濟性在 2022 年的基礎上提高 32%,從而推動市場向節能型感測器技術邁進。
The U.S. automotive powertrain sensors market size was estimated at USD 4,060.1 million in 2024 and is projected to grow at a CAGR of 7.6% from 2025 to 2030. The rapid shift toward electric vehicles (EVs) in the U.S. has significantly boosted the market growth of advanced powertrain sensors.
According to the Department of Energy's (DOE) 2022 Electrification Annual Progress Report, substantial investments are being made to enhance sensor technologies that improve lithium-ion battery efficiency and thermal management. Real-time voltage and current sensors now provide accurate data to battery management systems (BMS), extending battery life and optimizing charge cycles. Temperature sensors embedded within battery packs help prevent overheating, particularly in extreme climates a critical factor in enhancing EV reliability. Torque sensors in electric motors are enabling seamless and energy-efficient power delivery. These innovations are part of DOE-funded programs targeting a 15% reduction in powertrain energy consumption by 2025, which has propelled the market toward high-performance EV components.
Federal regulations aimed at reducing vehicle emissions have driven the demand for highly accurate aftertreatment sensors in internal combustion engine (ICE) vehicles. The EPA's 2023 Clean Trucks Plan, which mandates a 90% reduction in NOx emissions from heavy-duty vehicles by 2027, has boosted the market growth of technologies like wide-band lambda sensors and particulate matter (PM) sensors. These sensors play a vital role in maintaining air-fuel ratios and monitoring diesel exhaust filters, ensuring compliance with strict emission thresholds. In addition, the DOE's High-Efficiency Engine Technologies program is fostering the development of sulfur-resistant NOx sensors for hybrid engines, particularly useful in low-temperature exhaust scenarios. These regulatory pressures have propelled the market toward sensor solutions that improve environmental performance and vehicle longevity.
The increasing integration of Advanced Driver Assistance Systems (ADAS) with powertrain controls is creating new opportunities for sensor deployment, thereby boosting the market growth in this segment. Radar and lidar inputs from ADAS are now leveraged for predictive powertrain actions, such as anticipatory gear shifting and regenerative braking control in ICE and hybrid vehicles. The Federal Highway Administration's 2023 V2X Deployment Guidelines emphasize the importance of Vehicle-to-Infrastructure (V2I) communications, which adjust throttle and transmission behavior based on real-time traffic data using sensors like crankshaft and throttle position monitors. Field trials conducted by NREL have shown that such integrations can lead to 6-8% fuel efficiency gains in heavy-duty trucks, propelling the market for sensor-based energy optimization systems.
Growing concerns about the embedded energy consumption of automotive electronics have boosted the market demand for low-power sensor solutions. The DOE's 2024 Sustainable Transportation Strategy and a 2023 Oak Ridge National Laboratory (ORNL) study revealed that sensor manufacturing contributes significantly to an EV's overall energy footprint, up to 12%. As a result, sensor developers are focusing on innovations like silicon carbide (SiC)-based sensors, which reduce power consumption by 40% compared to conventional silicon components. Similarly, Hall-effect sensors in traction motors now operate on lower voltages, and CAN FD protocols minimize sensor wake-up cycles, improving energy efficiency. These trends are directly aligned with the EPA's 2025 CAFE standards, which call for a 32% boost in fleet-wide fuel efficiency compared to 2022, propelling the market toward energy-conscious sensor technology.
U.S. Automotive Powertrain Sensors Market Report Segmentation
This report forecasts revenue growth and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the U.S. automotive powertrain sensors market report based on sensor type, vehicle type, and propulsion type.