封面
市場調查報告書
商品編碼
1928996

電動推動衛星市場機會、成長要素、產業趨勢分析及2026年至2035年預測

Electric Propulsion Satellites Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2026 - 2035

出版日期: | 出版商: Global Market Insights Inc. | 英文 180 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

全球電力推進衛星市場預計到 2025 年將價值 503 億美元,到 2035 年達到 1,797 億美元,年複合成長率為 14%。

電動推進衛星市場-IMG1

市場成長得益於對大型衛星星系需求的加速成長、電力推進效率的持續提升以及對成本最佳化型發射和在軌運行解決方案日益成長的需求。通訊、觀測和安全衛星部署的不斷增加,推動了對能夠延長任務壽命並降低運行成本的推進系統的需求。電力推進技術的進步提高了推力效率和運作柔軟性,使衛星能夠以更少的燃料品質執行複雜的任務。人們對環境友善太空運作日益成長的興趣也推動了更清潔推進系統的應用。商業航太生態系統的擴展,以及公共和私營相關人員參與度的提高,進一步刺激了市場需求。成本效益仍然是衛星專案的關鍵優先事項,這促使人們專注於能夠平衡效能、擴充性和長期任務經濟性的推進架構,從而支持市場的持續擴張。

市場覆蓋範圍
開始年份 2025
預測年份 2026-2035
起始值 503億美元
預測金額 1797億美元
複合年成長率 14%

到2025年,混合動力推進系統市佔率將達到65.1%。此細分市場受惠於電力推進和化學推進系統的結合,能夠滿足多樣化的任務需求。隨著衛星營運商尋求既能保證機動性、續航力又能兼顧成本效益的可靠推進解決方案,對混合動力配置的需求持續成長。

預計到 2025 年,低地球軌道 (LEO) 衛星市場規模將達到 217 億美元。對 LEO 衛星的強勁需求源於其適用於需要頻繁部署的大型衛星群、高效的推進性能以及在廣泛應用領域中可靠的運行覆蓋。

到 2025 年,北美電力推進衛星市場將佔 36.7% 的佔有率。該地區的市場領先地位得益於對衛星技術的持續投資、對先進通訊基礎設施的強勁需求,以及在公共和私人資金的推動下推動技術不斷創新的發展。

目錄

第1章調查方法和範圍

第2章執行摘要

第3章業界考察

  • 生態系分析
    • 供應商情況
    • 利潤率
    • 成本結構
    • 每個階段的附加價值
    • 影響價值鏈的因素
    • 中斷
  • 產業影響因素
    • 促進要素
      • 對全球衛星星系的需求日益成長
      • 電力推進技術效率的進步
      • 對經濟實惠的發射解決方案的需求日益成長
      • 國防和商業航太發射數量激增
      • 增加太空基礎建設發展的投資
    • 產業潛在風險與挑戰
      • 高昂的初始開發和實施成本
      • 技術限制和性能問題
    • 市場機遇
      • 對永續空間技術的需求日益成長
      • 衛星零件小型化技術的進步
  • 成長潛力分析
  • 監管環境
    • 北美洲
    • 歐洲
    • 亞太地區
    • 拉丁美洲
    • 中東和非洲
  • 波特分析
  • PESTEL 分析
  • 科技與創新趨勢
    • 當前技術趨勢
    • 新興技術
  • 新興經營模式
  • 合規要求
  • 國防預算分析
  • 全球國防費用趨勢
  • 區域國防預算分配
    • 北美洲
    • 歐洲
    • 亞太地區
    • 中東和非洲
    • 拉丁美洲
  • 供應鏈韌性
  • 地緣政治分析
  • 勞動力分析
  • 數位轉型
  • 併購和策略聯盟趨勢
  • 風險評估與管理

第4章 競爭情勢

  • 介紹
  • 公司市佔率分析
    • 按地區
      • 北美洲
      • 歐洲
      • 亞太地區
      • 拉丁美洲
      • 中東和非洲
    • 市場集中度分析
  • 主要企業的競爭標竿分析
    • 財務績效比較
      • 收入
      • 利潤率
      • 研究與開發
    • 產品系列比較
      • 產品線的廣度
      • 科技
      • 創新
    • 地理分佈比較
      • 全球擴張分析
      • 服務網路覆蓋
      • 按地區分類的市場滲透率
    • 競爭定位矩陣
      • 領導企業
      • 受讓人
      • 追蹤者
      • 小眾玩家
    • 戰略展望矩陣
  • 重大進展
    • 併購
    • 夥伴關係與合作
    • 技術進步
    • 擴張與投資策略
    • 永續發展計劃
    • 數位轉型計劃
  • 新興/Start-Ups競賽的趨勢

第5章 Orbit 的市場估算與預測,2022-2035 年

  • 低地球軌道(LEO)
  • 中軌道(MEO)
  • 地球靜止軌道(GEO)

第6章 依衛星類型分類的市場估算與預測,2022-2035年

  • 純電動
  • 混合

7. 2022-2035年按衛星品質分類的市場估算與預測

  • 體重低於100公斤
  • 100~500 kg
  • 500~1000 kg
  • 超過1000公斤

第8章 2022-2035年按推進方式分類的市場估算與預測

  • 電暖型
  • 靜電
  • 電磁
  • 其他

第9章 按應用領域分類的市場估算與預測,2022-2035年

  • 地球觀測
  • 導航
  • 溝通
  • 天氣監測
  • 其他

第10章 依最終用途分類的市場估計與預測,2022-2035年

  • 政府
    • 軍隊
    • 其他
  • 商業的

第11章 2022-2035年各地區市場估計與預測

  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第12章:公司簡介

  • 主要企業
    • Boeing
    • Lockheed Martin
    • Northrop Grumman
    • Airbus
    • ArianeGroup
  • 按地區分類的主要企業
    • 北美洲
      • Aerojet Rocketdyne
      • Busek Co. Inc.
      • L3Harris Technologies
    • 亞太地區
      • Bellatrix Aerospace
    • 歐洲
      • OHB System
      • Safran Group
      • Sitael Spa
      • Thales Alenia Space
      • ThrustMe
  • 小眾玩家/干擾者
    • Accion Systems Inc.
    • Ad Astra Rocket
簡介目錄
Product Code: 9556

The Global Electric Propulsion Satellites Market was valued at USD 50.3 billion in 2025 and is estimated to grow at a CAGR of 14% to reach USD 179.7 billion by 2035.

Electric Propulsion Satellites Market - IMG1

Market growth is supported by accelerating demand for large-scale satellite constellations, continuous improvements in electric propulsion efficiency, and rising preference for cost-optimized launch and in-orbit operation solutions. Increased deployment of satellites for communication, observation, and security purposes is reinforcing the need for propulsion systems that offer extended mission life and reduced operational costs. Advancements in electric propulsion technologies are enhancing thrust efficiency and operational flexibility, enabling satellites to perform complex missions with lower fuel mass. Growing emphasis on environmentally responsible space operations is also encouraging the adoption of cleaner propulsion alternatives. Expansion of the commercial space ecosystem, combined with rising participation from both public and private stakeholders, is further stimulating demand. Cost efficiency remains a key priority across satellite programs, driving interest in propulsion architectures that balance performance, scalability, and long-term mission economics, thereby supporting sustained market expansion.

Market Scope
Start Year2025
Forecast Year2026-2035
Start Value$50.3 Billion
Forecast Value$179.7 Billion
CAGR14%

The hybrid propulsion segment accounted for 65.1% share in 2025. This segment benefits from combining electric and chemical propulsion systems to meet diverse mission requirements. Demand for hybrid configurations continues to grow as satellite operators seek reliable propulsion solutions that support both maneuverability and endurance while maintaining cost efficiency.

The low Earth orbit segment generated USD 21.7 billion in 2025. Strong demand for LEO satellites is being driven by their suitability for large constellations requiring frequent deployment, efficient propulsion performance, and reliable operational coverage across a wide range of applications.

North America Electric Propulsion Satellites Market held 36.7% share in 2025. Market leadership in the region is supported by sustained investment in satellite technology, strong demand for advanced communication infrastructure, and continued development of propulsion innovations backed by public and private funding.

Key companies operating in the Global Electric Propulsion Satellites Market include Airbus, Boeing, Lockheed Martin, Northrop Grumman, Thales Alenia Space, Safran Group, Aerojet Rocketdyne, L3Harris Technologies, ArianeGroup, OHB System, Accion Systems, Bellatrix Aerospace, Busek, ThrustMe, Sitael, and Ad Astra Rocket. Companies in the Electric Propulsion Satellites Market are strengthening their competitive position through technology innovation, strategic partnerships, and capacity expansion. Many players are investing in advanced propulsion systems that improve efficiency, reduce mass, and extend satellite operational life. Expanding hybrid propulsion portfolios is a key strategy to address diverse mission profiles and customer requirements. Firms are also collaborating with satellite manufacturers and launch providers to integrate propulsion solutions early in spacecraft design.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2022 - 2035
  • 2.2 Key market trends
    • 2.2.1 Orbit trends
    • 2.2.2 Satellite type trends
    • 2.2.3 Satellite mass trends
    • 2.2.4 Propulsion trends
    • 2.2.5 Application trends
    • 2.2.6 End use trends
    • 2.2.7 Regional
  • 2.3 TAM Analysis, 2026-2035
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising demand for global satellite constellations
      • 3.2.1.2 Progress in electric propulsion technology efficiency
      • 3.2.1.3 Increasing demand for affordable launch solutions
      • 3.2.1.4 Surge in space launches for defense, commercial
      • 3.2.1.5 Increased investment in space infrastructure development
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High initial development and implementation costs
      • 3.2.2.2 Technical limitations and performance concerns
    • 3.2.3 Market opportunities
      • 3.2.3.1 Growing demand for sustainable space technologies
      • 3.2.3.2 Advancements in miniaturization of satellite components
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter';s analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Emerging business models
  • 3.9 Compliance requirements
  • 3.10 Defense Budget Analysis
  • 3.11 Global Defense Spending Trends
  • 3.12 Regional Defense Budget Allocation
    • 3.12.1 North America
    • 3.12.2 Europe
    • 3.12.3 Asia Pacific
    • 3.12.4 Middle East and Africa
    • 3.12.5 Latin America
  • 3.13 Supply Chain Resilience
  • 3.14 Geopolitical Analysis
  • 3.15 Workforce Analysis
  • 3.16 Digital Transformation
  • 3.17 Mergers, Acquisitions, and Strategic Partnerships Landscape
  • 3.18 Risk Assessment and Management

Chapter 4 Competitive Landscape, 2025

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 Latin America
      • 4.2.1.5 Middle East & Africa
    • 4.2.2 Market Concentration Analysis
  • 4.3 Competitive benchmarking of key players
    • 4.3.1 Financial performance comparison
      • 4.3.1.1 Revenue
      • 4.3.1.2 Profit margin
      • 4.3.1.3 R&D
    • 4.3.2 Product portfolio comparison
      • 4.3.2.1 Product range breadth
      • 4.3.2.2 Technology
      • 4.3.2.3 Innovation
    • 4.3.3 Geographic presence comparison
      • 4.3.3.1 Global footprint analysis
      • 4.3.3.2 Service network coverage
      • 4.3.3.3 Market penetration by region
    • 4.3.4 Competitive positioning matrix
      • 4.3.4.1 Leaders
      • 4.3.4.2 Challengers
      • 4.3.4.3 Followers
      • 4.3.4.4 Niche players
    • 4.3.5 Strategic outlook matrix
  • 4.4 Key developments
    • 4.4.1 Mergers and acquisitions
    • 4.4.2 Partnerships and collaborations
    • 4.4.3 Technological advancements
    • 4.4.4 Expansion and investment strategies
    • 4.4.5 Sustainability initiatives
    • 4.4.6 Digital transformation initiatives
  • 4.5 Emerging/ startup competitors landscape

Chapter 5 Market Estimates and Forecast, By Orbit, 2022 - 2035 (USD Million)

  • 5.1 Key trends
  • 5.2 Low earth orbit (LEO)
  • 5.3 Medium earth orbit (MEO)
  • 5.4 Geostationary orbit (GEO)

Chapter 6 Market Estimates and Forecast, By Satellite Type, 2022 - 2035 (USD Million)

  • 6.1 Key trends
  • 6.2 Full electric
  • 6.3 Hybrid

Chapter 7 Market Estimates and Forecast, By Satellite Mass, 2022 - 2035 (USD Million)

  • 7.1 Key trends
  • 7.2 Less than 100 kg
  • 7.3 100 -500 KG
  • 7.4 500 -1000 Kg
  • 7.5 Above 1000 Kg

Chapter 8 Market Estimates and Forecast, By Propulsion, 2022 - 2035 (USD Million)

  • 8.1 Key trends
  • 8.2 Electrothermal
  • 8.3 Electrostatic
  • 8.4 Electromagnetic
  • 8.5 Others

Chapter 9 Market Estimates and Forecast, By Application, 2022 - 2035 (USD Million)

  • 9.1 Key trends
  • 9.2 Earth observation
  • 9.3 Navigation
  • 9.4 Communication
  • 9.5 Weather monitoring
  • 9.6 Others

Chapter 10 Market Estimates and Forecast, By End Use, 2022 - 2035 (USD Million)

  • 10.1 Key trends
  • 10.2 Government
    • 10.2.1 Military
    • 10.2.2 Others
  • 10.3 Commercial

Chapter 11 Market Estimates and Forecast, By Region, 2022 - 2035 (USD Million)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 France
    • 11.3.4 Spain
    • 11.3.5 Italy
    • 11.3.6 Netherlands
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 Australia
    • 11.4.5 South Korea
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Argentina
  • 11.6 Middle East and Africa
    • 11.6.1 South Africa
    • 11.6.2 Saudi Arabia
    • 11.6.3 UAE

Chapter 12 Company Profiles

  • 12.1 Global Key Players
    • 12.1.1 Boeing
    • 12.1.2 Lockheed Martin
    • 12.1.3 Northrop Grumman
    • 12.1.4 Airbus
    • 12.1.5 ArianeGroup
  • 12.2 Regional key players
    • 12.2.1 North America
      • 12.2.1.1 Aerojet Rocketdyne
      • 12.2.1.2 Busek Co. Inc.
      • 12.2.1.3 L3Harris Technologies
    • 12.2.2 Asia Pacific
      • 12.2.2.1 Bellatrix Aerospace
    • 12.2.3 Europe
      • 12.2.3.1 OHB System
      • 12.2.3.2 Safran Group
      • 12.2.3.3 Sitael Spa
      • 12.2.3.4 Thales Alenia Space
      • 12.2.3.5 ThrustMe
  • 12.3 Niche Players/Disruptors
    • 12.3.1 Accion Systems Inc.
    • 12.3.2 Ad Astra Rocket